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Quantifying stochastic outcomes
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A system consisting of two species in a fluctuating environment, when the interspecies competition for
resources is strong, will have a stochastic outcome: only one of the species will survive, but thesigisomio
way of knowing which one this will be. It is natural in such a situation to ask what will be the probability of
one or another of the species surviving. This probability is calculated as a function of the average growth rates
and the strengths of the interaction between the species and of the randomness. This is an example of a class
of stochastic problems in which multiple final states are available for occupation. We refer to the choice of final
states as state selection, and the probabilities of final states being occupied as state-selection probabilities. The
calculation of these probabilities is carried out in the context of a model of the system which consists of two
coupled stochastic differential equations. By reformulating these equations in terms of path integrals, the
powerful methods based on the use of optimal paths may be utilized to calculate the probability of one outcome
or the other. The analytical results obtained by using this technique agree well with numerical simulations
when both species have the same growth rate. Although the method adopted rests on the assumption that the
strength of the fluctuation®), is small, remarkably the analytic results are still found to be in good agreement
with the numerical results wheb is of order 1.
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I. INTRODUCTION dN,
ot Na(r2 = agoNp = azNy). 2

The dynamics of interacting species has been extensively

studied over many years and has a huge literature associatétie parameters of the model,a;; i,j=1,2, are all assumed
with it. The models proposed to describe the dynamics aréo be positive. In the absence of the interspecies interaction
extremely varied. For example, they may be deterministic oparametersy, anda,;, both species would separately follow
stochastic, focus on the realistic modeling of the interactiondogistic growth, with species achieving an equilibrium
between the species, stress the role of special relationship@pulation ofr;/a; individuals at long times. The inclusion
between the specigor instance, host-parasjteor investi-  Of the a;, and a,, factors may still allow coexistence, but
gate the possible generalizations to multispecies communith different equilibrium population sizes, but it may also

ties. In this paper, we will be mainly concerned with the CaUSe one of the species to die out. This is well kndth

effect of stochasticity from external sources, and will there-2nd is briefly reviewed in the next section.
In many ways, Eqs(1) and (2) can be said to represent

fore keep other complicating factors to a minimum. We will o : o O
he minimal model which takes competition into account be-

study a system comprising two species, with population ween two species. We have already mentioned several ways
Ni(t) andNy(t) at timet, which have growth rates, andry, which it could be extended. In this paper, we will be

respectively, in the absence of interaction between individu- . . ; : L
. . o interested in the introduction of environmental stochasticity.
als. The interaction induced due to competition for resource

will reduce these growth rates k) intraspecies competi- The philosophy of the approach is as follows. The important

tion, which will be assumed to be proportional to the numberaSpectS we wish to modéh this case the dynamics of the

of individuals in the species under consideration, ding two specieare given by a set of deterministic equatigis

interspecies competition, which will be assumed to be pro—thls case Eqs1) and (2)]. These should capture the essen-

. L 7 “tials of the interaction in the absence of any other factors. In
portional to the number of individuals of the other species. i | f h i in th
This is one of the simplest models for competition be. €2 ity, external factors such as climate, terrain, the presence
tween two species, usually called the Lotka-Voltefty) of other species, indeed any factor which may have a small
WO Sp i y . : uncertain influence on the two species should all have an
competition model[1]. The deterministic version of the

model is defined by the following two coupled ordinary dif- effect. Smce we cannot possibly model all .Of these com'plex
. S factors in detail, the best we can do in a simple model is to
ferential equations:

regard them as random—if we did try to systematically
model them, we would be looking at a much more compli-
cated deterministic system. This way of modeling the system
leads to governing equations which are stochastic, rather
than deterministic.

dN
d_tl =Ni(r; —a;N; —a;Ny), ()
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The external effects are incorporated into Ed$.and(2) In this paper, we will describe a scheme for calculating
in the same way that the competitive effects were: the growtlthese probabilities analytically. More specifically, we will
rates are modified by including a stochastic td@h Thus choose the parameter range in the LV model for which the
the deterministic growth rate;—a;;N;—a;oN, in Eq. (1) is  coexistence equilibrium state is unstable, and so eventually
replaced by the stochastic growth ratge—a;;N;—a;,N,  either species 1 or species 2 will die out. We will then cal-
+71(t), with the addition of a similar termy,(t), in Eq.(2).  culate the probability of these occurrences as a function of
Since the#(t) are designed to reflect a large number ofthe parameters of the model. The calculation will be carried
coupled variables omitted from the description of the modelout in the limit of weak external effect®,, D,— 0) using a
it is natural, by virtue of the central limit theorem, to assumepath-integral representation which holds for equations of the
that the,(t) are Gaussianly distributed. It also seems realistype (4) and (5). The power of this approach is that, while
tic to assume that any temporal correlation between thesgpproximation techniques for stochastic differential equa-
external influences is on scales very much shorter than thog®ns are difficult, these equations may be represented as path
of interest to us here and that thg(t) have zero mean. We integralswithout approximatiorand then systematic approxi-

therefore assume that mation techniques for path integrals developed over the
o years can be utilized. These methods are valid in the limit of

(m()7;(t')) =2D;6; 8t -t'), 1,j=1,2, (3 weak fluctuations, but since these extraneous effects are as-

where §; and 5(t-t') are the Kronecker and Dirac delta sumed to be small random perturbations, this seems entirely

reasonable. We have discussed the general aspects of these
kinds of calculations elsewhefd&2-14 and have also dis-
cussed this particular problem in a general Wa§|. In fact,

functions, respectively. ThB; are constants which describe
the strength of the stochastic effects. Since thé) are

Gaussian, the definition®) and the fact that they have zero the current paper may be thought of as following on from

mean[(7(t))=0, i=1,2] imply that the stochastic process is _ .
[(7(0) ]. 'mply Pr Ref.[15], where the strength of the path-integral method is
now completely specified. Therefore, the statistics of the . C 2 :
! . emphasized and the point illustrated on systems of one vari-
N;(t)—which are now themselves stochastic processes—ca

; : . ble. The calculation involving systems of two variables is
be determined from the stochastic versions of Egs.and sketched out in that paper, but no details of the background

@), to the model considered or of the calculations required are
[\ given. In the present paper, we will therefore concentrate on
o Nilrs —ayN; —aNy + 7(D)], (4 giving some background to the study and we also explain the

details of the calculation.

dN This use of stochastic differential equations for modeling

—2 = Ny[rp — @, — 8Ny + 75(1)]. (5)  purposes has a long history in the physical sciertfmsex-

dt ample, the use of the Langevin equation to study Brownian
The stochastic, or noise, terms are multiplicative: they apMotion[16,17) but is much less common in the biological
pear multiplying a function oN; andN.. sciences. The equations we _havg descpbed were first fgrmu—

Coupled differential equations of the type that appear if@ted by May[2,18]. Stochastic differential equations which

the deterministic LV model cannot, in general, be solvegcontain mul.tlpllcatlve noise, such as these, have some subtle
exactly, so it is not surprising that coupled stochastic differ-2SPects which must be treated carefiillg]. This has been
ential equations such as Edg) and (5) are even harder to understood, and discussed in detail, by some biolofsls
analyze. In the past, the analysis of the stochastic model hdgortunately, we will obtain excellent agreement with simula-
been almost entirely numerical, frequently with the inclusiontion results by performing only a leading-order calculation in
of addition effects such as colored noise, periodic fluctualh® noise strength. Since any subtleties associated with the
tions, or spatial effect§3—11]. Considerable progress on Occurrence of multlpllcatwe noise only manifest themselves
what is probably the most important question in these kind§it next to leading order, we will not need to confront these
of models—the eventual fate of the two populations at largeSSues here. The system of E¢) and (2) does not consti-
times—may be made in the deterministic case with almosfuté @ potential modefthey cannot be written in the form
no calculation[1]. On the other hand, one of the most im- Ny=—dV/dN;, N,=—dV/JN,, for some V). Although this
portant new features that occurs when going from the deteidoes not pose a problem for the application of our method, a
ministic model to the stochastic model is that in the stochaspotential model makes it easier to visualize some of the pro-
tic model it is no longer true that a given initial condition cesses involved, and to draw analogies with physical pro-
leads to the same outcome on every occasion. We now hawesses such as a Brownian particle moving on a surface. We
to speak about the probability of species 1 dying out or thewill therefore introduce another model which resembles the
probability of species 1 surviving. When the stochastic LV Lotka-Volterra competition modéLVCM), but which is de-
model is completely specifigdhat is, both the parameters in rivable from a potential and which has additive noise, rather
the deterministic equations are given and the statistics of ththan multiplicative noise. We will call this the additive noise
fluctuations is fixeyl these probabilities are well defined potential mode(ANPM). It will turn out that the analyses of
guantities. They can, for instance, be found by numericalljthese two models are so closely related that they may be
solving a large number of realizations of the process, andarried out in parallel.
counting the proportion of the runs in which either species 1 The outline of the paper is as follows. In Sec. I, we find
or species 2 becomes extinct. the equilibrium states and introduce variants of the model.
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The technique we use to perform calculations is introduced 0=y(B- yx— ey). (10)
in Sec. Il and implemented in the cases of interest to us in . o .
Secs. IV and V. The results are also given in Sec. V, wheré\n unstable solution at the origin always exists; the other

they are compared with the results of Monte Carlo simulaS0lutions are either stable or of mixed stabiligne stable
tions. Our conclusions are given in Sec. VI. Three Appen_dlrec'uon and one unstable directjprthat is, saddle points.

dixes describe technical details associated with the determi.h€y are as follows: o _
1(a). (x,y)=(alé8,0), which is stable ifay>B6 and a

nation of the optimal paths and the calculation of the actions ]
of these paths. saddle ifay<<Bé. o .
1(b). (x,y)=(0,B/¢€), which is stable ifBy>ae and a
saddle ifBy<ae.
Il. MODELS 2. Sincex,y>0, a solution withx#0, y#0 will only

. . . . .. existif ay- B8, By— ae andy?- Se all have the same sign. It
In this section, we will review the nature of the equilib- | i1 then be given by

rium states of the deterministic model. While these results
are well known, the analysis and associated discussion is _[By—ae ay—B5
necessary to enable us to describe the qualitative aspects of (xy) = ( V- S’ - Se )
state selection in more detail. We will also define the reduced o ) .
model, which contains the essential elements of the fulllhis solution is stable ify’< e and a saddle if*> de.
model, and the ANPM, which consists of a set of equations All of this is well known [1], and it is reviewed here

which are easier to visualize and which display the sam&imply as a foundation on which to build our discussion of
phenomenon of state selection. the qualitative behavior of the stochastic model. For this rea-

Our main aim in this paper is to illustrate how techniquesson, we have omitted the situations in which there are acci-

based on path integrals can be used to make analyticslental degeneracide.g., ay=p34 in 1(a)]. We determined
progress in the investigation of stochastic models of populathe stabilities of the equilibrium states by linear stability
tion dynamics. The technique is applicable in a wide range oftnalysis, although a simple global stability analysis is avail-
situations, the only real requirement being that the strength@ble in most casesee below _

of the fluctuations are small. This can be implemented by Based on the above, three different types of behavior are
writing D, =p,D andD,=p,D, wherep, andp, are constants possible, depending on the.parameters. of the model.

of order 1, which are to be considered part of the set of the |- If @y=p3 (or By-ae) is of opposite sign toy’- 5,
parameters of the model in the same way thatrfrend the ~ then no solution of type 2 exists and only one of the solu-
a; are, andD is the small parameter used in the approxima-tions 1@ and 1b) is stable. If 1a) is stable, then specigs
tion as described in the next section. Although the formalisnvill always die out, and will survive, and vice versa if (b)

is applicable to far more complicated models than that of LV;is stable. _

and with an arbitrary number of species, we will try to make Il If ay<péandBy<ae(0 ¥*< de), a solution of type

the analysis as transparent as possible by looking at the cageeXists and is stable. The two equilibrium points on the axes
wherep,=p, anda;,=a,;. This corresponds to the situation are no longer stable. The final state is therefore given by Eq.
where the two species have a symmetric effect on each othé}l).

and are affected by external factors equally strongly. We can ll. If ay>pé& and By>ae(0 ¥*> J¢), a solution of
simplify notation for this choice by writind>,=D,=D, r,  type 2 exists but is now no longer stable. The two equilib-
=a, 1,=6, a;p=a,u=7y a;;=0, axp=¢ Nj(t)=x(t), and rium points on the axes are stable in this case. The final state

11

N,(t)=y(t), so that the model now reads consists of individuals which belong either to speckesr
speciesy.
X= ax— yxy— & +x7y(t) (6) While the stochastic version of all these cases is interest-

ing, the first two differ from the last in that there is only one
stable equilibrium state. Thus while the stochastic dynamics
V= By — yxy— ey’ +yn(t), (7)  will differ from the deterministic dynamics in many details
in these two cases, the final state will usually be the same as
where the dot denotes differentiation with respect to time andound in the deterministic case. Even in case ll, where the

where system may leave the “final” state through fluctuations, the
most likely outcome will be coexistence of speci@$ This
(m()=0, (pM)nt))=2Dgst-t"), ij=1,2. is not true for case Ill. This case is already different in the

(8) deterministic LV model, because unlike cases | and Il, a glo-
bal stability analysis is not possibl&]. Therefore, one can-
The model defined by Eq&6)—(8) encompasses situations not use simple arguments in the deterministic case Ill to
where the two species coexist for long periods as well apredict what the final state will b@vhether thex or y species
situations where either one or the other dies out. To explorevill become extinck for given initial populations of species
this, let us first consider the deterministic case. The equiliband species. The final states are, of course, known with

rium states are solutions of certainty given the initial states: the stable stationary solu-
tions (a/ 6, 0) and (0, B/€) will have basins of attraction
0=x(a-yy- &), (9) which can be crudely characterized as “laxgsmally” and
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“large y, smallx,” or the “x valley” and ‘y valley,” respec- The formulation we have just described applies to any set
tively. In the deterministic problem, the initial starting point of first-order equations which are acted upon by Gaussian
determines absolutely the final selected state—they are in thehite noise. The model defined by E6) and(7), or alter-
same basin of attraction. These two basins will be separatethtively Eqs.(12) and(13), is of primary interest to us, but
by a line—the separatrix—which runs from the origin has two technical complications associated with it. First, in
through the saddle point given by Ed.1) (or by the corre- its deterministic form(that is, in the absence of nojsi is
sponding expression in the reduced mod@élithough the not a potential problem. This means that there is no potential
equation of the separatrix may be found, without knowing itsV(x,y) whose minima correspond to stable fixed points and
exact position it is not possible to decide in any simple waywhose maxima correspond to unstable fixed points. Sec-
whether initial points close to the separatrix are in the basirondly, the noise is multiplicative. One consequence of this is
of attraction of one fixed point or the other. For the stochasti¢hat the stochastic differential equatiof@® and (7) are am-
version of the model, on the other hand, there is a nonzerbiguous as they stand; further information has to be given to
probability that the system may move out of the basin ofmake the problem well-posed 9] (although, as we men-
attraction in which it starts and into the other one. It is thistioned in the Introduction, this ambiguity will not manifest
probability that we wish to calculate. itself to the order at which we are working-or these rea-
From the discussion so far in this section, we may desons, we will also study a set of equations which resemble
scribe qualitatively the expected behavior x¢f) and y(t) Egs.(6) and(7), but which do not suffer from these difficul-
starting at the initial point(xq,y,) at t=0. The situation ties, namely
which is of interest to us, case lll, is characterized by inter-
species competitiofwith a strength given byy), which is
strong as compared to intraspecies competitigmith . )
strengthss and e for speciesx andy, respectively. A direct y=py = vy - ey’ + mplt), (16)
consequence of this is that the stable states orxtaerdy o the reduced version witd=e=0. Once again, it corre-
axes are further out from the origin, in both theandy  sponds to the situation where the locally stable states are
directions, than is the saddle point. We can guarantee to be {\;shed out to infinity and the state selection now occurs
this regime by supposing thatand e are very small, so that \yhen the system reaches one of the infinitely long valleys
the stable states are now at very large valuescaindy.  |eading to these states. Since the state selection occurs before
Since these solutions are just at the stationary values of thge system reaches the vicinity of the stable states, this is
logistic equation for the successful species, this simply coraypected to have little influence on the phenomenon of state
responds to a large carrying capacity for the two species. Byelection—as can be easily observed from a study of the

contrast, the position of the unstable state has changed mughyjectories in Monte Carlo simulatiofi&4]. Equations(15)
less: in the limit where5 and e go to zero, the coordinate of 4n¢(16) may be written in the form

this equilibrium state tends to the finite valgg/ vy, alvy),

whereas the stable states tend to infinity. f=— (A% + () 17)
Since our main aim in this paper is to present a method T oax T

for calculating the probabilities of either specieer species

y being selected as the survivor, and since the essential fea- ) IV

tures become much clearer in the limite— 0, we will work y=-—+nl), (18)

X = ax— yxy? — &+ (), (15

in this limit for the rest of the paper. We call this the reduced 7y

problem and its relation to the full problem has been dis-with

cussed extensively in one of our earlier papgt4]. It is . P s .

defined by V(X,y) = - Ex2 - Eyz + %/xzy2 + ZX4 + Zy“ (19
X= ax = yxy+xm(), 12 Eor the reduced model
Y= By~ yxy+ymt), (13) VR(X,Y) = - gxz - 'gyz + %/xzyz. (20)

where 7;(t) is a Gaussian noise specified by E§).

The deterministic reduced LV model has only two equi-
librium states: the unstable state(@f 0) and the saddle point
at(x",y"), where

This is the ANPM.

In the absence of noise, the stationary points of the system
occur whendV/dx=0 anddV/dy=0. They are an unstable
local maximum at the origin and four saddle points between
B the axes at

X==, y=—. (14) 3 ”
Y Y x*=i\/j, y*=i\/: (21)
Y Y

Since there is now no stable state, we will consider one spe-

cies to have been selected as the survivor when the system These points are marked in Fig. 1, which is a plot of the
has moved far enough from the origin that the probability ofpotential(on the vertical axisfor a particular choice of pa-
returning is negligible. rameters. Such a figure cannot be drawn for the nonpotential
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over all these paths weighted with the factor deriving from
the Gaussian distribution,

f(T)=r,
P(rt, T|fo,0) =Cj 'or Jrlexp- 9r1/D}, (22

F(O) =F0

where(C is a normalization constant and where

1 T : 2 N 2
sm:;JO dt{(ﬁ—mw) +<‘—y’—ﬂ+yx> ] (23)

The functionalg] given by Eq.(23) is specific to the re-
duced LVCM and is obtained by eliminating (t) and n,(t)
from the Gaussian probability factor given above by using
FIG. 1. Representation of the potentit defined by Eq(20),  Eqgs.(12) and (13). The expression in Eq22) is the path-
with @=B=y=1. The saddle point$+) and separatricesheavy integral representation of the model. It has the same
lines) are also marked. content as Eqs(8), (12), and(13), and forms the basis of
our method. Just as ordinary integrals of the form
LVCM. In the ANPM, negative valued states are accessible/2dr g(r)exp{f(r)/D} may be evaluated by the method of
which means there are four final states that can be selectesteepest descent in the linidt— 0, so functional integrals of
corresponding to the four “valleys” in the potential that lie the type(22) may also be evaluated this way. Hdr 0, the
along the axes. Without noise, the system is entirely deterpath integral(22) is dominated by solutions of the differen-
ministic, and just as for the LVCM, thg&-y plane can be tial equationssS/ or(t)=0, which satisfy the boundary con-
divided into the basins of attraction of these states. ditions r(0)=r, andr(T)=r;. Just as foig(r) in the ordinary
We have seen that all of the models in this section showntegral case, the specific form for the functiodgd] is only
state selection: there are two or more possible final stategmportant at next to leading order. As we will see, a leading-
and we can only give the probability that one of these stategrder calculation is sufficient to give very accurate results, so
will be selected in a given realization. A method which al-we will not considerJ[f] further in this paper.
lows us to calculate this probability will be discussed in the  This formalism is very reminiscent of the variational for-
next section. mulation of classical mechani€&5] and so, by analogydr]
is called the action, and sometimes we attach a subsa’ipt “
to the solutions of the Euler-Lagrange equatiaf®¥ or(t)
IIl. PATH INTEGRALS =0, to indicate that they are “classical” paths. However, we

In this section, we review the formulation of stochastic Will follow common usage and call thewptimal pathsand
differential equations, such as E¢$2) and(13) or Egs.(17) frequently om!t the sub_scnpt: when it is clear that opt|_mal
and(18), as path integrals and obtain the dominant contripuPaths are being considered. The result of performing the
tion to the conditional probability we wish to determine in functional steepest descent on E2p) to leading order gives
the limit where the noise strength tends to zero. NN .

Instead of attempting to solve stochastic differential equa- P(F,T|Fo,0) ~ exp{~ S(f,T:o)/D}, (24

tions of the kind we have been discussing in this article,WhereSC is just the action of the optimal patfi(t). The
another way of proceeding is to simply imagine carrying Outeq it (24 is the starting point for our method: if we can

a large number of simulations of the stochastic equationsdetermine the functiois,, then we will have a form for the
each with a different realization of thg(t) and all starting at o jitional probability valid when the noise is weak. This in
fo=(Xo,Yo) at t=0. Each simulation gives a different path iy il enable us to obtain a formula for the probability that
F)=(x(t),y(t)), and to calculate the expected value of agjther speciesy becomes extinct or speciesbecomes ex-
given quantity we simply multiply it by the Gaussian prob- tinct, as a function of, B, v, andD.

ability factor exg-(1/4D) [ di{ 75(t)+75(t)]}, and integrate The quantity§r], sometimes also called the Onsager-
over all 7,(t) and 7,(t). The simplest quantity to consider is \Machlup functional[22,23,28, plays a central role in the
the conditional probability that the system is in the statetheory of stochastic processes when they are expressed by
(X,yr) at imeT, given it was initially in the statéx,Yo) at  equations such as Eq&l2) and (13). When the problem
t=0. In this case, we simply have to pick out only thoseunder consideration is a potential problem, such as the
paths which pass through the pofiat (x;,y;) at timeT. This ~ ANPM, defined by Eqs(17) and(18), it takes on an espe-

is the path-integral representation for Gaussian stochastigally simple form,

processe$21-23. Focusing for the moment on the LVCM,

i 17 (. av\? (. aV\?
we can change variables from thg(t) to the actual path S[F]:ZJ dt[<x+5) +< . ) } (25)
0

coordinate(t) andy(t) given by Eqs(12) and(13). Apart a_y
from a Jacobian factor], arising from the change of vari-
ables[24], the conditional probability is then simply the sum which may also be written as
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YN 1(7 . dv R T VIR 2 Y
Sm_ifo dt[E(x2+y2)—U(x,y)]+§fo de - Urty) == ox(a=w) = oy (B-»9)% (D)

(26) From Eqs.(28) and(29), but using the reduced potentidk,
we obtain the explicit equations for the optimal paths to be

X =x(a= W% = 2yxyA(B - yx3), (32

where

U__1<ﬂ/)2_1<ﬂ>2 (27
- 2\ax)  2\ay) Y=y(8- )2 = 2yy(a - w?). (33

The form (26) is useful because the last term is simply ~Of course, this additive noise potential model was intro-
(1/2)AV, and so only depends on the boundary values. Thigluced as a simpler system which nevertheless contains the
means that a variation of ER6) to obtain the optimal path Sa@me phenomena as the LV competition model, which is the

gives the same equations as those for a classical particle £l focus of our interest. Since there is no potential for the
unit mass moving in a two-dimensional potential given byLY model, we have to obtain the equations for the optimal

Eq. (27). paths directly from a variation of E423). One finds
EE()_(_ + )— (IX_IB_'_ > (34)
IV. OPTIMAL PATHS xdt\x ~“TW) Ty )
So far we have reformulated the stochastic differential _ _
equationg(12) and (13), or those associated with the poten- gg y N _ X N (35)
tial (19), as functional integrals, and explained that 2s ydt\y Bryx|=y atw).

— 0 these integrals will be dominated by the solutions of the ]

problem. In this section, we will obtain explicit forms for the @nd (33) are Newton's equations for a particle of unit mass

equations satisfied by the optimal paths and obtain approxf0Ving without friction in the potentidllg, the second set of
mate solutions for them. equations(34) and (35) have no such simple interpretation.

For a potential problem, the variation of the acti@6) Botn sets of equations are to be solved for paths satisfying
the initial and final conditions

gives
X(0) =%y, Y(0)=Yo (36)
. au
X=- 5, (28)
X(T)=%;,  Y(T) =ys. (37
U We will study both sets of equations in parallel since, al-
y=-—:1, (29 though they look rather different, the method we adopt when
ay solving them will bring out their similarities.

o i ; Our starting point is the observation that the stochastic
whereU(x,y) is given by Eq.27). These are Newton's law, effects are only significant in the vicinity of the separatrix.

but in the potentialU, not in the original potential of the . ; s
. . . Thus we only need to find the optimal paths for initial con-
stochastic probleny. It is important to realize that there are ... . = ) .
. ; . . ditions which are close to the separatrix; the final state is
two distinct dynamics associated with the problem under

consideration. The first is the stochastic dynamics given bdetermined with probability very nearly 1 for initial condi-
Co : . y 9 ._tions sufficiently far from the separatrix. The final states are
the stochastic differential equations with the potential

V(x,y). This was our starting point, and is the basis of dis-ihe x-valley” and y-valley” basins in both cases. To calcu-

4 invoking B . el dis the d : ate the probability of ending up in these states, an integra-
s s 1o over eachBasin il need o be caried ut
ministic dynamics given by Eqs(28) and (29), which de- The choice of the time interval between the initial and

. S S . . final states is more subtle. Let us imagine starting many re-
scnbe _theD—>O limit of the stochastic dyngmip_s. They are alizations of the stochastic system at the same position near
quite different and one should not transfer intuition from one,

| : to the separatrix. After some tim&, most of the systems
to Epﬁ other W't:‘JOl;t grﬁatf ﬁ?th;,el\'Fg tail;en. dqf £ will be approaching the final state which is on the same side
(19 aengi)?zt%n?(?be or the fu Is obtained from Egs. of_ the separatrix_as the initial state. The remaining systems
will be approaching the final state on the other side of the
1 1 separatrix. Nevertheless, in both cases the system will have
UX,y) == =x%(a— yy? = )% = =yA(B— yx% - ey?)?. “chosen” one of the states as long Bs$s reasonably large.
2 2 IncreasingT beyond this value will not change the fraction
(30)  of systems which choose one state or the other. Therefore,
we may choosé& to have any value, as long as state selection
For the reduced problem, which we will concentrate on inhas had a chance to occur, and in fact it will be convenient to
this paper, this potential becomes take T— oo,
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The nature of the optimal paths for largevas discussed yy? replaced byyx andyy, respectively. The solution of this
in Ref.[15] in some detail for the one-dimensional stochasticequation is discussed in detail in Appendix A, but in order to
problem defined byx=-V'(x)+7(t), whereV(x) is a poten-  simplify the discussion, let us restrict ourselves to the case
tial with a single maximum ax=0 such as/(x)=—(a/2)x>..  whereB=a. Then it is not surprisingand is proved in Ap-
For the moment, we only need to use the fact that, in thependix A that the equation of the separatrix in the upper
mechanical analogy of the deterministic motion of a particlequadrant isy=x for both models.
of unit mass, the only way that the particle can reach a finite. To determine the optimal path, we restrict ourselves to the
final state after a very large time is if its path takes it veryypper quadrant in the ANPM, since the results in the other
close.to the saddle point. Th|s_|s_the only region .where it cayuadrants will be identical up to reflections in tkeandy
effectively be trapped for an infinite length of tinfe the  54es. To begin, suppose thag,y,) actually lies on the sepa-
limit T—>c_x>). The analog in the one—dimensic_)nal problem isratrix (i.e., Yo=Xo=X<o When B=a). Then since it is clear
paths which approach very near to the maximum of the pog. ., £ (35) [or alternatively Eq(23)] that the equations

tential. We can_ now explam why taking the large time limit is without noise have solutions which have zero action, and
advantageous: if we did not do so, we would have to solve

: . i the actions are non-negative, the solutions of(&8).
two coupled nonlinear equations such as E§8) and(33) since . - . )
or Eqsl(%él) and (35) betv(\]/een two arbitrary goints—an ex- (or the corresponding equations in the LVCHre solutions

tremely difficult task. On the other hand, wh@n—, the of least action. They must therefolre be solutions of t_he
optimal path can be broken down into two pieces. The firsBecond-order Euler-Lagrange equations found from varying
part will be from(xo,Yo) to the saddle point, the second from the action. Th|s_ is easy to check by epr|C|t_ d|fferent|at_|on.

the saddle point to the final poirik;,y;). Since one of the Whgn B=«, trajectories alo_ng the separatrix are obtained
end points of both paths is the saddle pdintthe limit T Settingy(t)=x(t) and so solving

— o), the problem of solving the differential equations be-

comes tractable. w={ %7 < for the ANPM (40)
As we will see, we need to kedplarge but finite in order ax— yx? forthe LVCM,

to calculate the probability, lettinff— oo at the end of the i i

calculation. We still divide the path into two parts, but with Subject tox(0) =xso. One finds that

some care. One part contains most of the motion from the = o

initial point to the saddle. The second part, which contains VaXs o€ for the ANPM

the motion from the saddle to the end point, is very small for Va+ yé (- 1)

times before the saddle is reached. For fiflitehe optimal Xs(t) = S (41)

path never exactly reaches the saddle point. To account for aXs,0€ for the LVCM,

this, we incorporate a small offset into the second part of the a+ yXsoe™ - 1)

path, which then begins at some small finite value=di and . . . .
ends at(x;,y;) att=T. As T—c, this initial value tends to Where the subscrigtis to remind us that this is a solution on

zero. The first part of the path then does not start exactly '@ separatrix. Notice thag(t) tends to the saddle point as
(Xo,Yo), but the sum of the initial points of the two sections t—, as required, whichever side of the saddle the initial
will be (xo,Yo). The action we calculate for the first section POINt IS on. , _ ,

of the path will differ from the infiniteT value only by ex- Using the solutior(41) for motion along the separatrix as
ponentially small corrections. In the rest of this section, we Starting point, we can perform a linearization of the Euler-
will concentrate on finding the equations and action for the-@9range equations about this solution. In this way, we
first part of the path in the limif —. In Sec. V, we will wou_ld_ gxpecj[ to be able to obtain o_ptlmal paths which start at
describe the division of the path more precisely and discus@ initial point near the separatrix and end at the saddle
why the details of the second part of the path are far lesBCint- Therefore, we writgremembering thayy(t) =xy(t)]

important. _ o — q
To determine the optimal path froi,,y,) to the saddle X(0) =x() + X1, y(O) =x(0) + (1), (42)

point, we need to determine the equation of the separatrixand substitute these equations into those for the optimal
since we will be treating initial conditions near to the sepa-paths for the ANPM[Egs. (32) and (33)] and the LVCM
ratrix in a different way from those which are not. The equa-{Egs. (34) and (35)]. Canceling terms using the Euler-
tion of the separatrix can be found by determining the traject agrange equation satisfied by(t) and keeping only terms

tories of the system with no noise which pass through theinear inx(t) and§(t) gives the two sets of equations
saddle points. For the ANPM, the equations for these trajec-

tories are %= (- dayl + T 8ylla- ypdY, (43
X=ax=yxy?, y=By-wx, (38)
which leads to the following equation for the separatrix: ¥=(a? = dayC+ 7)Y - 8yxi(a—ydx  (44)
dy _ y(B= <) (39 for the ANPM, and
dx x(a-w?’ ) _
. . : XoxK % X L X
A completely analogous discussion in the LVCM gives the = =25 =1 5 =25+ X (X= v, (45)
equation of the separatrix to be EQ9), but with yx?> and Xs s s X Xs
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1 (a = yXs0)?
S= =0 (50)
08t a
8X§’O|: a In( —) —(a— Yxs,o):|
= 06} YXs0
<° for the LVCM, and where
04 1
Xs0=5(Xo+ Yo)- (51
0.2 . . . 2
0 2 4 6 8 .
t In the above, we have assumed that «, so that the first

part of the path ends at the saddle point. The results
FIG. 2. Thex coorglinate of the mqtion along the_separat_rix for (48)<(50) hold in this limit. However, as we will discuss in
the AN_PM _(dashed Ilnb_ an_d the optimal path within the linear {he next section, we need to ke&parge, but finite, in order
approximation,x(t) (solid ling) for (x,y0)=(0.4,0.3 and =8 {4 perform the integration over the possible final states. This
=r=1 is achieved by retaining the initial and final condition(®)
=rg andr(T)=r for the full path, but modifying the condi-
i ZQ ~ £s 2&5 ks X_SA tions on the first pa_rt of the pth to €0)=z andr(T)=0.
. 2 1258 Xs (Y~ )’X X (46) Herer(t) =y(t)—x(1) is the coordinate transverse to the sepa-
S s 7 S ratrix, which turns out to be the crucial one in performing the
for the LVCM, where we have made use of E40) to sim-  calculation. The quantity will be defined in Sec. V, but as
p||fy th|S expression' These equations appear to be Comp”T*)OO,Z% ro, as it has to. This means that the results found
cated, but in fact they can be solved analytically: the explicitn this current section are changed whers large but finite,
forms for these optimal paths within the linear approxima-by (i) replacingS=sSrj in Eq. (48) by §=572, and(ii) in-
tion are given in Appendix B. The motion on the separatrix iscluding exponentially small terms ifr—which vanish ast
compared to the linearized solution plus the motion on the—®—in the expressions given by Eqgl9) and (50). We
separatrix in Fig. 2. The paths begin at different values of Will now go on to discuss these points in more detail.
(the separatrix solution begins at the perpendicular projection

S

of the initial point onto the separatyixbut the optimal path V. RESULTS
approaches the separatrix solution as both approach the . . .
saddle poin{x=1). In this section, we add the second part of the optimal

path—which starts at the saddle point and ends in the final
state—to the calculation carried out in Sec. IV, and so obtain
an expression for the probability that each final state is se-
lected. We have seen that the ANPM and the LVCM have the
same mechanism of state selection, and the calculations in
one model bear a close similarity to those in the other. The

The action for the first part of the optimal path from the
initial point to the saddle may be found by expanding the
classical action arounx(t),

[

2
S=gh+i=grd+ S | di 2=
i=1

0 i | advantage of the ANPM is, of course, that because it is a
2 e potential model, the stochastic dynamics can be thought of as
1 Iy &S 54 the dynamics of a Brownian particle moving on a two-
+=> dt dt’ (t) ~| (1), . . ) T .
21 Jo Jo ari(t)or;(t') | ¢ dimensional surface. It will be useful to keep this picture in

(47) mind, and so we will discuss the final calculation of the
state-selection probabilities in the context of the ANPM,

to quadratic order. Sinc&(t) is a zero-action solution of the €ven though the formalism will also be applicable to the
extremal equatiorsS/ ér;(t)=0, the first two terms on the LVCM. . . . .

right-hand side of Eq(47) vanish, and only the quadratic We are assuming that is Igrge, SO as explained in Seg.
terms survive. Moreover, by choosing the linear perturbatioﬂv* the path will run from the initial point near the separatrix

: o . ; PRV to a point near the saddle, and then to the final point. The
tely, itis sh A dix B thatt)=-y(t), and = ¢ \ ) . . ! .
ﬁqui)opperﬁs(ycl trl1$ats OWn I Appendix Bt)=-y(v), an initial and final points are given, but the intermediate point

near the saddle is not: only in the limit— o does the path
S = S(Xo— Yo)?, (48)  reach the saddle. The optimal paths in The-« limit of the
ANPM are sketched in Fig. 3. The gridded surface represents
wheresS is given by the potentialJ, while the dark lines show the optimal paths.
From a starting point near the separatrix, the path goes to the
(a— yxgo)2 saddle point. From here, two final states are available, and
S= ' , (49 the paths into both the andy “valleys” are shown. It will
T2 a2 el also turn out that one of the integrals over the final position
4{@ 750 yxs‘°|n< YXZO)] becomes singular in the limit— e, and soT has to be kept
> large and finite until the last step of the calculation. The
for the ANPM and approach we will adopt is based on our experience with a
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saddle, sa(t)=0 and both termgr, andr,) are negligible.
The initial point ofr, will not be exactly atr, for finite T,
with the difference being included 3. The initial and final
conditions for the two parts are therefore

Wl

. “‘
SIS >
SIS STS SIS N

S i\\\\\,

I SN

SN

S s
<

ri(0 =z ry(MN=0, (55

r20)=ro-2z ry(T)=rs. (56)

The offsetr,(0) can be thought of as the value ot some
intermediate time, when the path is close to the saddle. It is
included inr, so that we can impose the conditio{T)=0,
1y which allows us to use the action for the first part of the path
as calculated in Sec. IV. For finit€, r,(0;r¢) (the initial
point of ry) is nonzero, but asl—o, ry(0;r;)—0, so z
FIG. 3. Representation of the potentldl The solution of the —rg in this limit. Since the two parts of the optimal path are
Euler-Lagrange equations from a point near the separatrix to thevidely separated, the action for the entire path is just the sum
saddle is shown, with the two alternative paths from the saddle t@f the two separate parts. However, the action of the second

S
<S 595
:““ ST
SIS
ASTSCESSSS
e
\‘0“‘
)

the two stable states. The fine line is the separatrix. part is zero, since this is a “downhill” solution: it is of the
form (38) corresponding to a solution of the original set of
similar calculation in a one-dimensional problefix= equations but without noise. Thus the action only comes
-V'(x)+5(t)], and we will follow closely Appendix B of from the first part of the path. However, this path has to be
Ref. [15]. solved subject ta,(0,2)=z (by definition and r(T,z)=0

We once again will assume that=3 so that the equation [since we have constructed; and r, to ensure this:
of the separatrix has the simple foryex. Then we define 2(T;r)=r(T)]. This gives the action calculated in the last
coordinates parallel and perpendicular to the separatrix by Section(up to exponentially small correctionexcept that

must be replaced by at finite T, that is,S.=Sz%. Therefore,

_ _1 o the probability that the system selects final states inythe
r=y=x s= 2(x+y) B \/; (52) valley is found by calculating

so that the origin is moved to the saddle point. We now pick ”

a positive value ofr, which we denote byR, which is far P(RTX0,Y0,0) ~ | ds A dr; exp{- SZ/D}.  (57)
enough from the separatrix so that once the system has

crossed the ling =R, there is negligible probability of it If we considerT to be fixed at some finite value, then

crossing back over the separatrix and ending up inxXhe can be thought of as a function of, the value of the offset
valley. Thus the probability that the system has selectedvill vary depending on the final point. Now we see why we
states in they valley is need to keef finite. If T—, zreacheg, and so no longer
- depends on;. We need to keef finite in order to make a
P(RTX.v0,0) = | d drP(re s Tlx0,y0.0), (53 change of variables from to z
(RTh0Y0.0) J SJR iP5 Tho,Y0.0), - (53 To evaluate the integrab7), we change variables from

to z using the transformation
where the integration over the final stafes,y;) has been

converted into an integral over the final statess;) in they z=ro-15(05r¢), (58)
valley. The integration over all allowes} will be relatively ivin

straightforward. The integration over thig is more subtle, giving
since it is clearly this integration that is crucial in determin- z

ing the probability that the system picks its final state in the P(R, T|X0,Y0,0) ~ f dsff dzexp(- SZ/D}, (59
y valley, so we will carry out this integration first. To do this, -
let us write the division of the optimal path for motion in the

S . whereZ=r,—-r,(0;R). For very large values of, there is not
r direction explicitly as the sum of two parts, 0~"2(0;R) y'arg of

sufficient time for the path to reach a point very close to the

F(t) =ry(t;2) +r,(t:rg). (54)  saddle and then move to the final point. The offset becomes
larger, and since, is fixed, |zl must increase. In the extreme

Herer,(t) contains the first part of the path to the vicinity of limit as r;— o, z— —. Therefore, the upper limit of infinity

the saddle point andy(t) the second part of the path from the for r; becomes a lower limit of minus infinity faz.

vicinity of the saddle point to the final state. Feg T (before Having made the change of variables, we may now let

the saddle point is reachgd, is negligible and the solution T—o. Since there is zero chance that the final state of the

only consists ofr;. Fort very close toT (after leaving the second path will be at;=R at infinite time,Z=rg in this

saddle point r; is negligible and the solution only consists limit, and the result becomes independenRpfis we would

of r,. For the vast majority of the time, the system is near theexpect,
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—

o
P(X0,Yo) ~ J dsff dzexp{— SZ%/D}. (60) 0s

The integrand does not depend §nso this second inte- % 06}
gration will simply produce a prefactor. There are other pre- >
factors, but as we will see, the leading-order exponential in = 047
Eq. (60) is sufficient to give excellent agreement with Monte ool
Carlo simulations. The normalization can be determined by
noting that if x,=y,, the probability in Eq.(60) should be 83=5= = S 045 05 055 06 065
1/2, since if the system starts on the separatrix, there is an ' ' ' X ' ' ‘

equal probability that it should end up in tkendy valleys. 0

Forry#0, the integral in Eq(60) is an error function and so FIG. 4. Probability that the positive-state is reached in the
1 - LVCM, within the linear approximatiorisolid line) compared with
P(y valley) = —[1 + er(royr’S/D)], (61) Monte Carlo calculatiori+), as a function of starting position along
2 the linexg=1-y,, whenD=0.01 ande=B=y=1.

0 P(x valley) = 1[1 —eri(ro\x’%)]. (62) departure of our calcullation from the_Monte Carlo_values_.
2 State selection from points near the origin was considered in
Ref.[14], but the selection of the nonadjacent states can be
thought of as “escape” over the maximum in the potential
near the origin. In systems escaping from a metastable state
over a barrier, we would expect escape to become possible
1 e when the noise strength reaches some critical valu®,of
P(x valley) = 5[1 + er1(|r0|\,5/D)], (63)  proportional to the barrier height. A crude measure of the
height of the “barrier” over which the ANPM system is es-
1 caping isAV,, defined as the difference between the values
0 P(y valley) = —[1 - er1(|r0|\/Sl_D)]. (64) of the potential at the starting point and at the origin. Figure
2 7 plots the raticdAVy/D,. for a variety of starting points in a
band of width 0.4 either side of the separativereD, is the
value of D for which the nonadjacent states begin to be ac-
cessiblg. We see that the ratio is indeed relatively constant,
and is approximately equal to 7 for this parameter choice.
) ] o For starting points on the far side of the saddle point from
whereS(ro)=5rg and where the plus or minus sign is taken the origin (distances greater than 1.4 in Fig, the “barrier
depending_on whether the signroih the selected state is the height” is harder to characterize, as there is a mininitire
same or different from the sign of. saddlé between the starting point and the origin, so the ratio
An identical line of reasoning applies to the LVCM and Ay, /D, is less meaningful. Different choices of the param-
thus the result65) gives the probability of each state being gtersqa, 8, andy also give a ratio that is constant with start-
selected both in the ANPM and the LVCM, whesés given g noint, although the value differs. For the LVCM, there
by Eq.(49) or Eq.(50) as appropriate. The accuracy of this gre only two possible states, so we do not encounter the same
result may be checked by performing a large number ofjtyation. From the right-hand sides of Figs. 5 and 6, it is

simulations of the original stochastic model starting in thecjear that our results are accurate up to much larger values of
state(xo,Yo) and counting the fraction of occasions in which b peyondD=1 in this case, whea=8=y=1.

the final state lies in th& valley or they valley.

In Fig'. 4, we see just such a comparison. The'probability VI. CONCLUSIONS
of selecting the-valley state derived from a numerical simu-
lation of the LVCM model is compared with the probability ~ In this paper, we have investigated a model of two species
calculated using Eq(65), for a range of initial positions in competition with each other in a stochastic environment.
along a line perpendicular to the separatrix. The agreement is the parameter range of interest, only one species survives
very good, even for starting points relatively far from the in the final state, but there is re priori way of predicting
separatrix. In this exampl®=0.01, but the results remain which one it will be: the outcome is stochastic. This is an
very good for quite large values @, as shown in Figs. 5 example of a large class of problems which involve state
and 6. For the ANPM, there are four competing states, and agelection: if there is more than one accessible final state in a
D becomes larger, it becomes possible for the two nonadjadynamical system, what are the probabilities of these being
cent states to be reachéir starting points in the positive chosen from a given initial state when the system is subject
guadrant, these are the negativend negativer valleys.  to noise? We described an analytical approach to the calcu-
The sum of probabilities to reach these states is also markddtion of these probabilities and illustrated it on the Lotka-
in the left-hand plots of Figs. 5 and 6 as open circles, and ivolterra competition model(LVCM) and on a potential
is clear that the appearance of these states coincides with tireodel with additive nois¢éANPM). The introduction of this

We have been assuming that>0 (i.e., we start above the
separatrix, withyy,>Xg), but if ry<0, by a similar set of
arguments to those given above, we find that

These can be incorporated into one relation,

P, = %{1 * eri[ \WJ} (65)
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ANPM LVCM
14 14
FIG. 5. Probability that the positive-state is
o8 08 reached, within the linear approximatidsolid
) ) line), compared with Monte Carlo simulations
5 0 ¢ 5 06 b (black circles for both ANPM (left) and LVCM
X 04 . %04 (right), as a function ofD, for initial position
o 8 o (X0,Y0)=(0.4,0.3 and a=B=y=1. The open
0.2 o) 0.2 circles are the sum of the probabilities for reach-
o ing the states which are on the axes nonadjacent
?0:_4: 103_3: 10:_2 : 1o 10° (1)0_4 100 102 107 10° to the starting positions.

latter model served three purposés:it illustrated the fact for initial points near the separatrix, where there will be a
that the analytical technique which we used has many uninonzero probability of the system crossing over. How “near”
versal features, and can be applied to many models whicls defined is not so clear, but we found that results which are
show state selection of this kin@i) being a potential model, in excellent agreement with numerical simulations can be
it allowed us to visualize the dynamics far more easily, andobtained by keeping only the leading-ord@xponential
(iii ) the presence of more than two final states allowed us tterm in the steepest-descent calculation and linearizing the
observe when the smdll-approximation fails. A similar ef- equations for the optimal paths about optimal paths which lie
fect is observed for starting points close to the origin. Theentirely on the separatrix. The reasons why using only the
dynamics of the system in this case are influenced by th&eading-order contribution is sufficient to get such good
unstable point at the origin, and the linearization about theagreement, even for values Bf larger than 1, is not at all
separatrix becomes inaccurate. Starting points near the origitiear and merits further investigation. It also shows that there
were considered in detail in RgfL4]. The additive nature of are no noise-induced transitions because of changes in sta-
the noise also contrasted with the more complex multiplicability of fixed points or because of new steady states created
tive noise of the LVCM. at finite D. Such phenomena may occur in systems with mul-
The calculation was based on the representation of thaplicative noise[27—29. They would not be picked up by
stochastic differential equations describing the system athe approximations used in this paper, which are valid in the
path integrals, and the subsequent evaluation of these palimit D— 0.
integrals using the method of steepest descents for small val- In an earlier papefl15], we discussed the relationship
ues of the noise strength. The integrals are dominated blgetween calculations of the type we have presented here and
“optimal paths” which can be determined by solvidgter-  those carried out using the backward Fokker-Planck equation
ministic differential equations. These types of calculations[30,31]. Although the latter method is considerably simpler
are commonplace when studying transitions from one stableo implement for one-dimensional problems, for systems in-
state of a dynamical system to another stable stbtegh  volving two dimensions or more it is much less useful. In
made metastable by the addition of ngjdeut here we have fact, the calculation in these cases proceeds by a series of
been concerned with quantifying transition probabilitiesmappings on to the classical mechanics defined by the action
from an arbitrary initial point to ametgstable state. The Sdiscussed in Sec. Ill. By contrast, the path-integral method
calculation was made easier by the observation that, if thés more directly associated with the original stochastic prob-
initial state is reasonably far from the separatrix separatindgem, and the intuition gained by visualization of the optimal
the two basins of attraction of the stable states in a systempaths is frequently helpful.
with no noise, then there is little chance of the system cross- An important ingredient in the analysis was the observa-
ing over the separatrix. Therefore, in this case the systertion that the state-selection probabilities become independent
will select the final state which is in the same basin of attracof the time intervalT, between the initial and final statesTif
tion as the initial state. It is clear that this will not be the caseis sufficiently large that state selection has had a chance to

ANPM LVCM
14 14
FIG. 6. Probability that the positive-state is
0.8 0.8 reached, within the linear approximatidsolid
> = line), compared with Monte Carlo simulations
S 0.6 T 0.6 (black circles for both ANPM (left) and LVCM
\>|</ 04 ) . 2|<, 04 (right), as a function ofD, for initial position
a o a (X0,Y0)=(1.3,1.2 anda=p=0.8, y=1. The open
02 0.2 circles are the sum of the probabilities for reach-
o ° ing the states which are on the axes nonadjacent
0 010‘0_‘3‘0“0_‘2‘0‘0_1—“‘0—“ 0 PR . to the starting positions.
100 107 107 107 10 100 107 107 100 10
D D
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12 path on the separatrix. In addition, no integration had to be

10 carried out to calculate the action of the optimal paths. We

expect these features will persist in more complicated prob-

lems of this type, such as higher-dimensional systems, and so
provide a means of determining state-selection probabilities
in a range of situations.
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FIG. 7. Ratio ofAV, to D, for starting points within 0.2 of the
separatrix, as a function of the distance of the starting point fro
the origin. The open circles are based on Monte Carlo simulation
of 50 000 runs, as are those in Figs. 5 and 6.

occur. However, the calculation simplifies considerably i
the limit T—oo, since the optimal path passes through the
saddle point, which allows us to break the path down into ~ APPENDIX A EQUATION OF THE SEPARATRIX

two disti_nct parts. The first part of t_he path runs from the |, this appendix, we determine the equation of the sepa-
initial point (xo,Yo) to the saddle point and has a nonzeroyayrix poth for the ANPM and the LVCM, and also the equa-
action if the initial point is not on the separatriX,#Yo in  tion of the optimal paths in both models which start on the
the symmetric case=p). The second part has zero action. separatrix and end at the saddle point.

There is a small technical complication: in order to perform g discussed in Sec. IV, the equations of the optimal paths
an integral over one of the final positiofts), it is necessary  \hich stay on the separatrix are simply the original stochas-
to keepT large but finite. This is overcome by reexpressingtic equations, but without the noise. These equations are
the initial and final conditions on the entire optimal path first-order equations which can be shown to satisfy the
[r(0)=rq, r(T)=r¢] as initial and final conditions on the first second-order Euler-Lagrange equations obtained from a
part of the path onlyr,(0)=z, ry(T)=0]. After the change of variation of the appropriate action. These equations for the
variable fromr; to z has been carried out in the integral, the ANPM were given in Sec. IVEq. (38)], and for the LVCM

limit T— o may safely be taken. they are
The method of calculation was illustrated by assuming ) ]
that the growth rate of both species was eduat ). This X=axX=yxy, Y=pBy=yxy. (A1)

implied that the separatrix was simply given by the equationciearly these two sets of equations are very closely related: if
y=X. There is no problem performing the calculation when,,¢ substitutex’ (1) =x(t) and y’(7)=y2(t), where r=2t, in
a# 3, but much of it has to be carried out nhumerically be- Eq. (38), we obtain Eq(A1). So if we can solve one set of

cause the equation of the separatrix in this c&@peen in o4 ations, we can solve the other. Therefore, we will concen-
Appendix A can only be found implicitly. The optimal path {.ate on those given by EGAL).

on the separatrix can be found by integrating backwards in | ot s first simplify the equations by introducing new
time from the saddle pointso that the direction along the variablesX andY thFr)ofa/gh a y g

separatrix is unstable

The most remarkable aspect of the calculation was the BX(1) aY(t)
fact that a simple, closed form expression for the state- X(t)zT* y(t)=T, (A2)
selection probability could be found which held for values of
D as large as 1(for the range of values of the other param- SO that Eq(A1) now reads
eters of the model which we investigajedhis is larger than : :
we would naively have expected and is a much larger value X=aX(1-Y), Y=pY(1-X). (A3)
than would pe used ?n practice, since in the construction _Oﬁ'he saddle point is now &X’,Y")=(1,1) and the equation
the stochastic equanons, the_ effects modeled by the noisg ihe separatrix is
terms should be small in relation to the other terms. We were
able to identify the reason for the breakdown in the approxi- dY BY(1-X)
mation asD increased in the ANPM. This happened at dx - aX(1-Y)’
smaller values oD than for the LVPM, and was due to
escape from initial states in the positive quadrant to the state30lving this equation subject to the condition tNat1 when
lying on the negative« and negativey axes. Since no such X=1 gives
states exist for the LVPMx andy being constrained to be _ _ RS
non-negativg this effect is not present in this case. These [Xexp(1-X)}=[Y exp(1 =Y)]". (A5)
results were obtained without having to go beyond leadingVhen 8=a, this equation reduces e *=Ye . The solu-
order or beyond the linear approximation about the optimations of the equatiori(X)=f(Y), wheref({)=€" ¢¢, may be

(A4)
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investigated by considering the inverse of the funciipd) In the original formulation of the problem, there are two
=({-1)-In ¢{=0. The solution we require is the one which initial conditions, x(0)=x, and y(0)=y,, but we now have
lies in the sectorX, Y<1 andX, Y>1 and is simplyX=Y.  three possible initial parametens;=r(0), s5=s(0), andXsq

The equation of the optimal path is seen from E&3) to  =x,(0). We are free to choose one of them however we wish,
Satisfy)'(:a)((j_—)(), which is easily solved to give so long as the remaining two are then chosen so as to satisfy
" x(0)=xg andy(0) =y,. If we think of the initial point(Xy,Yo)
X((t) = Xs,0€ (A6) as a perturbation about the separatrix, we are effectively free

1+Xso(e-1)" to choose the direction of the perturbation fréxgg, Xso). It
would seem sensible to choosgg, so that the perturbation is

as small as possible—that is, perpendicular to the separatrix.
So we choosex,=0, which means we must havg():%(xo
p=[Xexpl-X)1%, o=[Yexp1l-Y)]%, (A7) +Yo) andro=yo—xo. As we will see later, this choice of lin-

. o . earization leads to significant simplifications.
so that the equation of the separatripiso, the saddle point The equations for ands may be further rationalized by
is again(1, 1), and p(t)=o(t) for the optimal path on the introducing new variables

separatrix. However, we have not found a differential equa-

tion for p(t) which is simple enough to solve, and so the s(t) = xsf(t), r(t) =x9(t). (B7)
optimal path has to be found numerically in this case. This i

easy enough to do: by reversing the time, and starting from%z;Or the ANPM, we have

whereX,=Yo= X, is the starting point.
When a # B, new variables can be defined by

point arbitrarily close to the saddle point, the direction along ) ¢
the separatrix is now ustable and the solution to a given f+—f=(3¢%-2¢)f, (B8)
initial (now fina) point on the separatrix can be determined. ¢
A similar calculation leads to equations for the ANPM simi-
lar to Egs.(A6) and (A7). . &, 5
g+;g=(—¢ +2¢)9, (B9)

APPENDIX B: LINEARIZATION NEAR THE SEPARATRIX

_ 2 . . . . _
In Sec. IV, we obtained equations for the optimal pathsWhered’_yXS/a and the time derivatives are now with re

which start near the separatrix by linearizing about optimaPpeCt tor=2at. For the LVCM, we have

paths which start on the separatrix. These linear deviations fo (29 - P

satisfy Eqs(43) and(44) in the case of the ANPM and Eqgs. '

(45) and(46) in the case of the LVCM. In this appendix, we )

explicitly solve these equations. g= 149, (B11)
In both cases, the equations can be decoupled by deﬁ”ir\ﬁhere = yx

new variables °

(B10)

/|« and the time derivatives are now with re-
spect tor=at.
We now make one last transformation. We introduce a

N - 1. -
rt) =yt —-x), st)= E[X(t) +y(H)]. (B1)  new independent variable
The equations in terms of these new variables are now w= _1 (B12)
1+Ae”
F=(a?+dayd - YXr, (B2)
where
8= (? - 1202 + 152%)s (B3) 2,
or the ANPM. and ——=—for the ANPM
or the , an -
A=q @70 (B13)
m . . e . 2 . !yX 0
rooXr X X% Xs ——=2— forthe LVCM.
— =25 =1 525+ Xty (T B4 -
Xs X {xg X % 7/XS} ' B4 a= Yo
, Then ¢=1-u and ¢/ p=pu, and alsoy=1-u. In addition,
S XS )X X X we introduce new dependent variables
;—2Xif={—§—zx—§+;ﬁxs—yf}s (B5) P
S s s S f(7) = uF(w), (1) =uG(w). (B14)

for the LVCM. To determine the initial conditions in terms of

r ands, let us first note that we may also define them as Substituting these changes of variables into the equations for

f andg, and canceling terms proportional th-u) and u?
1 from the resulting differential equatiorigz=1 only whent
rt) =y(t) -x, st= E[X(t) +Y(O]=x(t). (B6) =0 andw+0 for finite t), we find
i i i d’F dF
The vangbler(t) correqunds to motion perpend|cullar to the u(l—p) 5 +(3-5u)— =0, (B15)
separatrix and(t) to motion parallel to the separatrix. du du
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d’G dG
wl-pm)——+(3-5u)—-4G=0  (B16)

du du

for the ANPM and
2 d
1-p)—+(@3-4u)—=0, B1

m(l—p) 0 (3 -4uw) da (B17)

d°G dG
(B19)

1-p)——+(3-4u)— -2G=0
w(l—p) " (3 -4u) da

PHYSICAL REVIEW E 71, 011106(2005

Filw =1, Fyw)=-2 In(

1 1 1
Giw) =—=In(l-w) +—, Gyw=—
7 7 %

for the LVCM.
We require that botf(t) and¥(t) tend to zero ag— «, so

for the LVCM. These are hypergeometric equations, but foryo+ the end point of the path is at the saddle point. This

tunately the solutions correspond to degenerate cases and GAtblies that only the solutions

1(n) andG4(u) in the above

all be expressed in terms of elementary functions. Indepen§et of solutions are allowed. The solutions §6t) have the

dent solutions are

Fiw =1, Fz(,u):3|n< s )+i 1.2

1-p/ 1-p 2p° u
(B19)
1 1 1
Gi(w) = ?In(l -p+ wl-p) Gao(w) = 2
(B20)

for the ANPM and

() = {C{[axsl(a - yxﬁ)]ln(yxﬁ/a) +[al(yxg)]} forthe ANPM
[ D{laxd(a - yxlIn(yxda) + x¢

where C and D are constants. Sincg(0)=ry=yy—X,, we
identify the constant€ andD as

C=roflaxsd(a = pEolin(yeda) +[al(yxs oI},
(B25)

D= ro{[axs,o/(a - sz,o)]m(?’xs,o/a) + Xs,O}_l- (B26)
Finally we note that, sinc&(t)=-%(t), r(t)=-2%(t)=2§(t).

APPENDIX C: CALCULATION OF THE ACTION

Having determined the analytic form for the portion of the
optimal path from the initial state to the separatrix in Appen-
dix B, we will now determine the action of this solution. It
will turn out that it can be calculated without carrying out
any further integrals. The action of the path from the saddle
point to the final state is zero, so the action calculated in this

appendix is the total action.

To calculate the action for the ANPNR5), we need to
find X+dV/dx andy+dV/dy. Substitutingx=xg+X, y=Xs+9,
and using the fact thax(t) satisfies Eq.(40) and y(t)=
-X(t)=r(t)/2,

especially simple forms

B - w3)la forthe ANPM
S(t):{ (e = yQ)la (B23)

BoX{(a — yxg)/la forthe LVCM,

whereB,; andB, are constants. Implementing the initial con-
dition s(0)=0 givesB;=B,=0 and sos(t)=0. This shows
that our choice of perturbation means that motion is such that
X(t)==Y(t), which greatly simplifies the analysis.

The remaining solution is given by

(B24)
for the LVCM,

A VY A N T
(10 20 =[s+ 5)=Jemta i e

to linear order. For the LVCM, an analogous calculation
gives

[
X e y 4 2| dt\ xg Ik
(C2

again to linear order. We therefore find the classical action
for the first part of the path in the ANPM to be

("
&= gf di[i - (a+ PO, (C3
0
and for the LVCM to be
("
&= 3 f difg - yxgJ?, (C4
0

whereg(t) is defined by Eq(B7). Multiplying out the square

in the integrands and integrating by parts yields new inte-
grals which are identically zero. To prove this, E40) for
thexs has to be used, as well as EB2) for r and Eq.(B11)
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for g. Only the boundary terms obtained through integration g - yXg=D(a — yxo (C?)

by parts remain, _
for the LVCM. Therefore, we find that

1 .
g[rr = (a+ yAr?)} for the ANPM ~ (= y0)%r5 c8)
Sl (C5) > , o, [ a
“[gg- yxg?} for the LVCM. 4 (= 7xs0) = Xsoln| —-
8 YXS,O
Bothr andg vanish at the upper limit, and also we may show 0" the ANPM and
by direct differentiation of Eq(B24) that . (a- YXs,o)zfg o
_ 5 2aC(a - yx2) ) a
r=(a+yxgr=- ok (C6) 8XCo| alIn — - (@ = yXs0)
YXs,0
for the ANPM and for the LVCM.
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