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A system consisting of two species in a fluctuating environment, when the interspecies competition for
resources is strong, will have a stochastic outcome: only one of the species will survive, but there is noa priori
way of knowing which one this will be. It is natural in such a situation to ask what will be the probability of
one or another of the species surviving. This probability is calculated as a function of the average growth rates
and the strengths of the interaction between the species and of the randomness. This is an example of a class
of stochastic problems in which multiple final states are available for occupation. We refer to the choice of final
states as state selection, and the probabilities of final states being occupied as state-selection probabilities. The
calculation of these probabilities is carried out in the context of a model of the system which consists of two
coupled stochastic differential equations. By reformulating these equations in terms of path integrals, the
powerful methods based on the use of optimal paths may be utilized to calculate the probability of one outcome
or the other. The analytical results obtained by using this technique agree well with numerical simulations
when both species have the same growth rate. Although the method adopted rests on the assumption that the
strength of the fluctuations,D, is small, remarkably the analytic results are still found to be in good agreement
with the numerical results whenD is of order 1.
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I. INTRODUCTION

The dynamics of interacting species has been extensively
studied over many years and has a huge literature associated
with it. The models proposed to describe the dynamics are
extremely varied. For example, they may be deterministic or
stochastic, focus on the realistic modeling of the interactions
between the species, stress the role of special relationships
between the speciessfor instance, host-parasited, or investi-
gate the possible generalizations to multispecies communi-
ties. In this paper, we will be mainly concerned with the
effect of stochasticity from external sources, and will there-
fore keep other complicating factors to a minimum. We will
study a system comprising two species, with populations
N1std andN2std at time t, which have growth ratesr1 andr2,
respectively, in the absence of interaction between individu-
als. The interaction induced due to competition for resources
will reduce these growth rates bysid intraspecies competi-
tion, which will be assumed to be proportional to the number
of individuals in the species under consideration, andsii d
interspecies competition, which will be assumed to be pro-
portional to the number of individuals of the other species.

This is one of the simplest models for competition be-
tween two species, usually called the Lotka-VolterrasLV d
competition modelf1g. The deterministic version of the
model is defined by the following two coupled ordinary dif-
ferential equations:

dN1

dt
= N1sr1 − a11N1 − a12N2d, s1d

dN2

dt
= N2sr2 − a22N2 − a21N1d. s2d

The parameters of the model,r i ,aij ; i,j =1,2, are all assumed
to be positive. In the absence of the interspecies interaction
parametersa12 anda21, both species would separately follow
logistic growth, with speciesi achieving an equilibrium
population ofr i /aii individuals at long times. The inclusion
of the a12 and a21 factors may still allow coexistence, but
with different equilibrium population sizes, but it may also
cause one of the species to die out. This is well knownf1g
and is briefly reviewed in the next section.

In many ways, Eqs.s1d and s2d can be said to represent
the minimal model which takes competition into account be-
tween two species. We have already mentioned several ways
in which it could be extended. In this paper, we will be
interested in the introduction of environmental stochasticity.
The philosophy of the approach is as follows. The important
aspects we wish to modelsin this case the dynamics of the
two speciesd are given by a set of deterministic equationsfin
this case Eqs.s1d and s2dg. These should capture the essen-
tials of the interaction in the absence of any other factors. In
reality, external factors such as climate, terrain, the presence
of other species, indeed any factor which may have a small
uncertain influence on the two species should all have an
effect. Since we cannot possibly model all of these complex
factors in detail, the best we can do in a simple model is to
regard them as random—if we did try to systematically
model them, we would be looking at a much more compli-
cated deterministic system. This way of modeling the system
leads to governing equations which are stochastic, rather
than deterministic.
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The external effects are incorporated into Eqs.s1d ands2d
in the same way that the competitive effects were: the growth
rates are modified by including a stochastic termf2g. Thus
the deterministic growth rater1−a11N1−a12N2 in Eq. s1d is
replaced by the stochastic growth rater1−a11N1−a12N2
+h1std, with the addition of a similar term,h2std, in Eq. s2d.
Since thehistd are designed to reflect a large number of
coupled variables omitted from the description of the model,
it is natural, by virtue of the central limit theorem, to assume
that thehistd are Gaussianly distributed. It also seems realis-
tic to assume that any temporal correlation between these
external influences is on scales very much shorter than those
of interest to us here and that thehistd have zero mean. We
therefore assume that

khistdh jst8dl = 2Didi jdst − t8d, i, j = 1,2, s3d

where di j and dst− t8d are the Kronecker and Dirac delta
functions, respectively. TheDi are constants which describe
the strength of the stochastic effects. Since thehistd are
Gaussian, the definitionss3d and the fact that they have zero
meanfkhistdl=0, i =1,2g imply that the stochastic process is
now completely specified. Therefore, the statistics of the
Nistd—which are now themselves stochastic processes—can
be determined from the stochastic versions of Eqs.s1d and
s2d,

dN1

dt
= N1fr1 − a11N1 − a12N2 + h1stdg, s4d

dN2

dt
= N2fr2 − a22N2 − a21N1 + h2stdg. s5d

The stochastic, or noise, terms are multiplicative: they ap-
pear multiplying a function ofN1 andN2.

Coupled differential equations of the type that appear in
the deterministic LV model cannot, in general, be solved
exactly, so it is not surprising that coupled stochastic differ-
ential equations such as Eqs.s4d and s5d are even harder to
analyze. In the past, the analysis of the stochastic model has
been almost entirely numerical, frequently with the inclusion
of addition effects such as colored noise, periodic fluctua-
tions, or spatial effectsf3–11g. Considerable progress on
what is probably the most important question in these kinds
of models—the eventual fate of the two populations at large
times—may be made in the deterministic case with almost
no calculationf1g. On the other hand, one of the most im-
portant new features that occurs when going from the deter-
ministic model to the stochastic model is that in the stochas-
tic model it is no longer true that a given initial condition
leads to the same outcome on every occasion. We now have
to speak about the probability of species 1 dying out or the
probability of species 1 surviving. When the stochastic LV
model is completely specifiedsthat is, both the parameters in
the deterministic equations are given and the statistics of the
fluctuations is fixedd, these probabilities are well defined
quantities. They can, for instance, be found by numerically
solving a large number of realizations of the process, and
counting the proportion of the runs in which either species 1
or species 2 becomes extinct.

In this paper, we will describe a scheme for calculating
these probabilities analytically. More specifically, we will
choose the parameter range in the LV model for which the
coexistence equilibrium state is unstable, and so eventually
either species 1 or species 2 will die out. We will then cal-
culate the probability of these occurrences as a function of
the parameters of the model. The calculation will be carried
out in the limit of weak external effectssD1, D2→0d using a
path-integral representation which holds for equations of the
type s4d and s5d. The power of this approach is that, while
approximation techniques for stochastic differential equa-
tions are difficult, these equations may be represented as path
integralswithout approximationand then systematic approxi-
mation techniques for path integrals developed over the
years can be utilized. These methods are valid in the limit of
weak fluctuations, but since these extraneous effects are as-
sumed to be small random perturbations, this seems entirely
reasonable. We have discussed the general aspects of these
kinds of calculations elsewheref12–14g and have also dis-
cussed this particular problem in a general wayf15g. In fact,
the current paper may be thought of as following on from
Ref. f15g, where the strength of the path-integral method is
emphasized and the point illustrated on systems of one vari-
able. The calculation involving systems of two variables is
sketched out in that paper, but no details of the background
to the model considered or of the calculations required are
given. In the present paper, we will therefore concentrate on
giving some background to the study and we also explain the
details of the calculation.

This use of stochastic differential equations for modeling
purposes has a long history in the physical sciencessfor ex-
ample, the use of the Langevin equation to study Brownian
motion f16,17gd but is much less common in the biological
sciences. The equations we have described were first formu-
lated by Mayf2,18g. Stochastic differential equations which
contain multiplicative noise, such as these, have some subtle
aspects which must be treated carefullyf19g. This has been
understood, and discussed in detail, by some biologistsf20g.
Fortunately, we will obtain excellent agreement with simula-
tion results by performing only a leading-order calculation in
the noise strength. Since any subtleties associated with the
occurrence of multiplicative noise only manifest themselves
at next to leading order, we will not need to confront these
issues here. The system of Eqs.s1d and s2d does not consti-
tute a potential modelsthey cannot be written in the form

Ṅ1=−]V/]N1, Ṅ2=−]V/]N2, for some Vd. Although this
does not pose a problem for the application of our method, a
potential model makes it easier to visualize some of the pro-
cesses involved, and to draw analogies with physical pro-
cesses such as a Brownian particle moving on a surface. We
will therefore introduce another model which resembles the
Lotka-Volterra competition modelsLVCM d, but which is de-
rivable from a potential and which has additive noise, rather
than multiplicative noise. We will call this the additive noise
potential modelsANPMd. It will turn out that the analyses of
these two models are so closely related that they may be
carried out in parallel.

The outline of the paper is as follows. In Sec. II, we find
the equilibrium states and introduce variants of the model.
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The technique we use to perform calculations is introduced
in Sec. III and implemented in the cases of interest to us in
Secs. IV and V. The results are also given in Sec. V, where
they are compared with the results of Monte Carlo simula-
tions. Our conclusions are given in Sec. VI. Three Appen-
dixes describe technical details associated with the determi-
nation of the optimal paths and the calculation of the actions
of these paths.

II. MODELS

In this section, we will review the nature of the equilib-
rium states of the deterministic model. While these results
are well known, the analysis and associated discussion is
necessary to enable us to describe the qualitative aspects of
state selection in more detail. We will also define the reduced
model, which contains the essential elements of the full
model, and the ANPM, which consists of a set of equations
which are easier to visualize and which display the same
phenomenon of state selection.

Our main aim in this paper is to illustrate how techniques
based on path integrals can be used to make analytical
progress in the investigation of stochastic models of popula-
tion dynamics. The technique is applicable in a wide range of
situations, the only real requirement being that the strengths
of the fluctuations are small. This can be implemented by
writing D1=r1D andD2=r2D, wherer1 andr2 are constants
of order 1, which are to be considered part of the set of the
parameters of the model in the same way that ther i and the
aij are, andD is the small parameter used in the approxima-
tion as described in the next section. Although the formalism
is applicable to far more complicated models than that of LV,
and with an arbitrary number of species, we will try to make
the analysis as transparent as possible by looking at the case
wherer1=r2 anda12=a21. This corresponds to the situation
where the two species have a symmetric effect on each other
and are affected by external factors equally strongly. We can
simplify notation for this choice by writingD1=D2=D, r1
=a, r2=b, a12=a21=g, a11=d, a22=e, N1std=xstd, and
N2std=ystd, so that the model now reads

ẋ = ax − gxy− dx2 + xh1std, s6d

ẏ = by − gxy− ey2 + yh2std, s7d

where the dot denotes differentiation with respect to time and
where

khistdl = 0, khistdh jst8dl = 2Ddi jdst − t8d, i, j = 1,2.

s8d

The model defined by Eqs.s6d–s8d encompasses situations
where the two species coexist for long periods as well as
situations where either one or the other dies out. To explore
this, let us first consider the deterministic case. The equilib-
rium states are solutions of

0 = xsa − gy − dxd, s9d

0 = ysb − gx − eyd. s10d

An unstable solution at the origin always exists; the other
solutions are either stable or of mixed stabilitysone stable
direction and one unstable directiond, that is, saddle points.
They are as follows:

1sad. sx,yd=sa /d ,0d, which is stable ifag.bd and a
saddle ifag,bd.

1sbd. sx,yd=s0,b /ed, which is stable ifbg.ae and a
saddle ifbg,ae.

2. Sincex,y.0, a solution withxÞ0, yÞ0 will only
exist if ag−bd, bg−ae andg2−de all have the same sign. It
will then be given by

sx,yd = Sbg − ae

g2 − de
,
ag − bd

g2 − de
D . s11d

This solution is stable ifg2,de and a saddle ifg2.de.
All of this is well known f1g, and it is reviewed here

simply as a foundation on which to build our discussion of
the qualitative behavior of the stochastic model. For this rea-
son, we have omitted the situations in which there are acci-
dental degeneraciesfe.g., ag=bd in 1sadg. We determined
the stabilities of the equilibrium states by linear stability
analysis, although a simple global stability analysis is avail-
able in most casesssee belowd.

Based on the above, three different types of behavior are
possible, depending on the parameters of the model.

I. If ag−bd sor bg−aed is of opposite sign tog2−de,
then no solution of type 2 exists and only one of the solu-
tions 1sad and 1sbd is stable. If 1sad is stable, then speciesy
will always die out, andx will survive, and vice versa if 1sbd
is stable.

II. If ag,bd andbg,aes⇒g2,ded, a solution of type
2 exists and is stable. The two equilibrium points on the axes
are no longer stable. The final state is therefore given by Eq.
s11d.

III. If ag.bd and bg.aes⇒g2.ded, a solution of
type 2 exists but is now no longer stable. The two equilib-
rium points on the axes are stable in this case. The final state
consists of individuals which belong either to speciesx or
speciesy.

While the stochastic version of all these cases is interest-
ing, the first two differ from the last in that there is only one
stable equilibrium state. Thus while the stochastic dynamics
will differ from the deterministic dynamics in many details
in these two cases, the final state will usually be the same as
found in the deterministic case. Even in case II, where the
system may leave the “final” state through fluctuations, the
most likely outcome will be coexistence of speciesf2g. This
is not true for case III. This case is already different in the
deterministic LV model, because unlike cases I and II, a glo-
bal stability analysis is not possiblef1g. Therefore, one can-
not use simple arguments in the deterministic case III to
predict what the final state will beswhether thex or y species
will become extinctd for given initial populations of speciesx
and speciesy. The final states are, of course, known with
certainty given the initial states: the stable stationary solu-
tions sa /d, 0d and s0, b /ed will have basins of attraction
which can be crudely characterized as “largex, smally” and
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“large y, small x,” or the “x valley” and “y valley,” respec-
tively. In the deterministic problem, the initial starting point
determines absolutely the final selected state—they are in the
same basin of attraction. These two basins will be separated
by a line—the separatrix—which runs from the origin
through the saddle point given by Eq.s11d sor by the corre-
sponding expression in the reduced modeld. Although the
equation of the separatrix may be found, without knowing its
exact position it is not possible to decide in any simple way
whether initial points close to the separatrix are in the basin
of attraction of one fixed point or the other. For the stochastic
version of the model, on the other hand, there is a nonzero
probability that the system may move out of the basin of
attraction in which it starts and into the other one. It is this
probability that we wish to calculate.

From the discussion so far in this section, we may de-
scribe qualitatively the expected behavior ofxstd and ystd
starting at the initial pointsx0,y0d at t=0. The situation
which is of interest to us, case III, is characterized by inter-
species competitionswith a strength given bygd, which is
strong as compared to intraspecies competitionswith
strengthsd ande for speciesx andy, respectivelyd. A direct
consequence of this is that the stable states on thex and y
axes are further out from the origin, in both thex and y
directions, than is the saddle point. We can guarantee to be in
this regime by supposing thatd ande are very small, so that
the stable states are now at very large values ofx and y.
Since these solutions are just at the stationary values of the
logistic equation for the successful species, this simply cor-
responds to a large carrying capacity for the two species. By
contrast, the position of the unstable state has changed much
less: in the limit whered ande go to zero, the coordinate of
this equilibrium state tends to the finite valuesb /g, a /gd,
whereas the stable states tend to infinity.

Since our main aim in this paper is to present a method
for calculating the probabilities of either speciesx or species
y being selected as the survivor, and since the essential fea-
tures become much clearer in the limitd ,e→0, we will work
in this limit for the rest of the paper. We call this the reduced
problem and its relation to the full problem has been dis-
cussed extensively in one of our earlier papersf14g. It is
defined by

ẋ = ax − gxy+ xh1std, s12d

ẏ = by − gxy+ yh2std, s13d

wherehistd is a Gaussian noise specified by Eq.s8d.
The deterministic reduced LV model has only two equi-

librium states: the unstable state ats0, 0d and the saddle point
at sx* ,y*d, where

x* =
b

g
, y* =

a

g
. s14d

Since there is now no stable state, we will consider one spe-
cies to have been selected as the survivor when the system
has moved far enough from the origin that the probability of
returning is negligible.

The formulation we have just described applies to any set
of first-order equations which are acted upon by Gaussian
white noise. The model defined by Eqs.s6d ands7d, or alter-
natively Eqs.s12d and s13d, is of primary interest to us, but
has two technical complications associated with it. First, in
its deterministic formsthat is, in the absence of noised it is
not a potential problem. This means that there is no potential
Vsx,yd whose minima correspond to stable fixed points and
whose maxima correspond to unstable fixed points. Sec-
ondly, the noise is multiplicative. One consequence of this is
that the stochastic differential equationss6d and s7d are am-
biguous as they stand; further information has to be given to
make the problem well-posedf19g salthough, as we men-
tioned in the Introduction, this ambiguity will not manifest
itself to the order at which we are workingd. For these rea-
sons, we will also study a set of equations which resemble
Eqs.s6d ands7d, but which do not suffer from these difficul-
ties, namely

ẋ = ax − gxy2 − dx3 + h1std, s15d

ẏ = by − gx2y − ey3 + h2std, s16d

or the reduced version withd=e=0. Once again, it corre-
sponds to the situation where the locally stable states are
pushed out to infinity and the state selection now occurs
when the system reaches one of the infinitely long valleys
leading to these states. Since the state selection occurs before
the system reaches the vicinity of the stable states, this is
expected to have little influence on the phenomenon of state
selection—as can be easily observed from a study of the
trajectories in Monte Carlo simulationsf14g. Equationss15d
and s16d may be written in the form

ẋ = −
] V

] x
+ h1std, s17d

ẏ = −
] V

] y
+ h2std, s18d

with

Vsx,yd = −
a

2
x2 −

b

2
y2 +

g

2
x2y2 +

d

4
x4 +

e

4
y4. s19d

For the reduced model

VRsx,yd = −
a

2
x2 −

b

2
y2 +

g

2
x2y2. s20d

This is the ANPM.
In the absence of noise, the stationary points of the system

occur when]V/]x=0 and]V/]y=0. They are an unstable
local maximum at the origin and four saddle points between
the axes at

x* = ±Îb

g
, y* = ±Îa

g
. s21d

These points are marked in Fig. 1, which is a plot of the
potentialson the vertical axisd for a particular choice of pa-
rameters. Such a figure cannot be drawn for the nonpotential
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LVCM. In the ANPM, negative valued states are accessible,
which means there are four final states that can be selected,
corresponding to the four “valleys” in the potential that lie
along the axes. Without noise, the system is entirely deter-
ministic, and just as for the LVCM, thex-y plane can be
divided into the basins of attraction of these states.

We have seen that all of the models in this section show
state selection: there are two or more possible final states,
and we can only give the probability that one of these states
will be selected in a given realization. A method which al-
lows us to calculate this probability will be discussed in the
next section.

III. PATH INTEGRALS

In this section, we review the formulation of stochastic
differential equations, such as Eqs.s12d ands13d or Eqs.s17d
ands18d, as path integrals and obtain the dominant contribu-
tion to the conditional probability we wish to determine in
the limit where the noise strength tends to zero.

Instead of attempting to solve stochastic differential equa-
tions of the kind we have been discussing in this article,
another way of proceeding is to simply imagine carrying out
a large number of simulations of the stochastic equations,
each with a different realization of thehistd and all starting at
rW0=sx0,y0d at t=0. Each simulation gives a different path
rWstd=(xstd ,ystd), and to calculate the expected value of a
given quantity we simply multiply it by the Gaussian prob-
ability factor exph−s1/4Ddedtfh1

2std+h2
2stdgj, and integrate

over all h1std andh2std. The simplest quantity to consider is
the conditional probability that the system is in the state
sxf ,yfd at timeT, given it was initially in the statesx0,y0d at
t=0. In this case, we simply have to pick out only those
paths which pass through the pointrW f =sxf ,yfd at timeT. This
is the path-integral representation for Gaussian stochastic
processesf21–23g. Focusing for the moment on the LVCM,
we can change variables from thehistd to the actual path
coordinatesxstd andystd given by Eqs.s12d and s13d. Apart
from a Jacobian factor,J, arising from the change of vari-
ablesf24g, the conditional probability is then simply the sum

over all these paths weighted with the factor deriving from
the Gaussian distribution,

PsrW f,TurW0,0d = CE
rWs0d=rW0

rWsTd=rWf

DrW JfrWgexph− SfrWg/Dj, s22d

whereC is a normalization constant and where

SfrWg =
1

4
E

0

T

dtFS ẋ

x
− a + gyD2

+ S ẏ

y
− b + gxD2G . s23d

The functionalSfrWg given by Eq.s23d is specific to the re-
duced LVCM and is obtained by eliminatingh1std andh2std
from the Gaussian probability factor given above by using
Eqs. s12d and s13d. The expression in Eq.s22d is the path-
integral representation of the model. It has the same
content as Eqs.s8d, s12d, and s13d, and forms the basis of
our method. Just as ordinary integrals of the form
ea

bdr gsrdexphfsrd /Dj may be evaluated by the method of
steepest descent in the limitD→0, so functional integrals of
the types22d may also be evaluated this way. ForD→0, the
path integrals22d is dominated by solutions of the differen-
tial equationsdS/drWstd=0, which satisfy the boundary con-
ditions rWs0d=rW0 and rWsTd=rW f. Just as forgsrd in the ordinary
integral case, the specific form for the functionalJfrWg is only
important at next to leading order. As we will see, a leading-
order calculation is sufficient to give very accurate results, so
we will not considerJfrWg further in this paper.

This formalism is very reminiscent of the variational for-
mulation of classical mechanicsf25g and so, by analogy,SfrWg
is called the action, and sometimes we attach a subscript “c”
to the solutions of the Euler-Lagrange equationsdS/drWstd
=0, to indicate that they are “classical” paths. However, we
will follow common usage and call themoptimal pathsand
frequently omit the subscript “c” when it is clear that optimal
paths are being considered. The result of performing the
functional steepest descent on Eq.s22d to leading order gives

PsrW f,TurW0,0d , exph− ScsrW f,T;rW0d/Dj, s24d

where Sc is just the action of the optimal pathrWcstd. The
result s24d is the starting point for our method: if we can
determine the functionSc, then we will have a form for the
conditional probability valid when the noise is weak. This in
turn will enable us to obtain a formula for the probability that
either speciesy becomes extinct or speciesx becomes ex-
tinct, as a function ofa , b , g, andD.

The quantitySfrWg, sometimes also called the Onsager-
Machlup functionalf22,23,26g, plays a central role in the
theory of stochastic processes when they are expressed by
equations such as Eqs.s12d and s13d. When the problem
under consideration is a potential problem, such as the
ANPM, defined by Eqs.s17d and s18d, it takes on an espe-
cially simple form,

SfrWg =
1

4
E

0

T

dtFSẋ +
] V

] x
D2

+ Sẏ +
] V

] y
D2G , s25d

which may also be written as

FIG. 1. Representation of the potentialVR defined by Eq.s20d,
with a=b=g=1. The saddle pointss+d and separatricessheavy
linesd are also marked.
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SfrWg =
1

2
E

0

T

dtF1

2
sẋ2 + ẏ2d − Usx,ydG +

1

2
E

0

T

dt
dV

dt
,

s26d

where

U = −
1

2
S ] V

] x
D2

−
1

2
S ] V

] y
D2

. s27d

The form s26d is useful because the last term is simply
s1/2dDV, and so only depends on the boundary values. This
means that a variation of Eq.s26d to obtain the optimal path
gives the same equations as those for a classical particle of
unit mass moving in a two-dimensional potential given by
Eq. s27d.

IV. OPTIMAL PATHS

So far we have reformulated the stochastic differential
equationss12d and s13d, or those associated with the poten-
tial s19d, as functional integrals, and explained that asD
→0 these integrals will be dominated by the solutions of the
equationsdS/drWstd=0. These are the optimal paths of the
problem. In this section, we will obtain explicit forms for the
equations satisfied by the optimal paths and obtain approxi-
mate solutions for them.

For a potential problem, the variation of the actions26d
gives

ẍ = −
] U

] x
, s28d

ÿ = −
] U

] y
, s29d

whereUsx,yd is given by Eq.s27d. These are Newton’s law,
but in the potential,U, not in the original potential of the
stochastic problem,V. It is important to realize that there are
two distinct dynamics associated with the problem under
consideration. The first is the stochastic dynamics given by
the stochastic differential equations with the potential
Vsx,yd. This was our starting point, and is the basis of dis-
cussions invoking Brownian particles and is the dynamics of
Monte Carlo simulations. The second dynamics is thedeter-
ministic dynamics given by Eqs.s28d and s29d, which de-
scribe theD→0 limit of the stochastic dynamics. They are
quite different and one should not transfer intuition from one
to the other without great care being taken.

The potentialU for the full ANPM is obtained from Eqs.
s19d and s27d to be

Usx,yd = −
1

2
x2sa − gy2 − dx2d2 −

1

2
y2sb − gx2 − ey2d2.

s30d

For the reduced problem, which we will concentrate on in
this paper, this potential becomes

URsx,yd = −
1

2
x2sa − gy2d2 −

1

2
y2sb − gx2d2. s31d

From Eqs.s28d ands29d, but using the reduced potentialUR,
we obtain the explicit equations for the optimal paths to be

ẍ = xsa − gy2d2 − 2gxy2sb − gx2d, s32d

ÿ = ysb − gx2d2 − 2gyx2sa − gy2d. s33d

Of course, this additive noise potential model was intro-
duced as a simpler system which nevertheless contains the
same phenomena as the LV competition model, which is the
real focus of our interest. Since there is no potential for the
LV model, we have to obtain the equations for the optimal
paths directly from a variation of Eq.s23d. One finds

1

x

d

dt
S ẋ

x
− a + gyD = gS ẏ

y
− b + gxD , s34d

1

y

d

dt
S ẏ

y
− b + gxD = gS ẋ

x
− a + gyD . s35d

It should be noted that whereas the first set of equationss32d
and s33d are Newton’s equations for a particle of unit mass
moving without friction in the potentialUR, the second set of
equationss34d and s35d have no such simple interpretation.
Both sets of equations are to be solved for paths satisfying
the initial and final conditions

xs0d = x0, ys0d = y0 s36d

xsTd = xf, ysTd = yf . s37d

We will study both sets of equations in parallel since, al-
though they look rather different, the method we adopt when
solving them will bring out their similarities.

Our starting point is the observation that the stochastic
effects are only significant in the vicinity of the separatrix.
Thus we only need to find the optimal paths for initial con-
ditions which are close to the separatrix; the final state is
determined with probability very nearly 1 for initial condi-
tions sufficiently far from the separatrix. The final states are
the “x-valley” and “y-valley” basins in both cases. To calcu-
late the probability of ending up in these states, an integra-
tion over each basin will need to be carried out.

The choice of the time interval between the initial and
final states is more subtle. Let us imagine starting many re-
alizations of the stochastic system at the same position near
to the separatrix. After some time,T, most of the systems
will be approaching the final state which is on the same side
of the separatrix as the initial state. The remaining systems
will be approaching the final state on the other side of the
separatrix. Nevertheless, in both cases the system will have
“chosen” one of the states as long asT is reasonably large.
IncreasingT beyond this value will not change the fraction
of systems which choose one state or the other. Therefore,
we may chooseT to have any value, as long as state selection
has had a chance to occur, and in fact it will be convenient to
takeT→`.
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The nature of the optimal paths for largeT was discussed
in Ref. f15g in some detail for the one-dimensional stochastic
problem defined byẋ=−V8sxd+hstd, whereVsxd is a poten-
tial with a single maximum atx=0 such asVsxd=−sa /2dx2.
For the moment, we only need to use the fact that, in the
mechanical analogy of the deterministic motion of a particle
of unit mass, the only way that the particle can reach a finite
final state after a very large time is if its path takes it very
close to the saddle point. This is the only region where it can
effectively be trapped for an infinite length of timesin the
limit T→`d. The analog in the one-dimensional problem is
paths which approach very near to the maximum of the po-
tential. We can now explain why taking the large time limit is
advantageous: if we did not do so, we would have to solve
two coupled nonlinear equations such as Eqs.s32d and s33d
or Eqs.s34d and s35d between two arbitrary points—an ex-
tremely difficult task. On the other hand, whenT→`, the
optimal path can be broken down into two pieces. The first
part will be fromsx0,y0d to the saddle point, the second from
the saddle point to the final pointsxf ,yfd. Since one of the
end points of both paths is the saddle pointsin the limit T
→`d, the problem of solving the differential equations be-
comes tractable.

As we will see, we need to keepT large but finite in order
to calculate the probability, lettingT→` at the end of the
calculation. We still divide the path into two parts, but with
some care. One part contains most of the motion from the
initial point to the saddle. The second part, which contains
the motion from the saddle to the end point, is very small for
times before the saddle is reached. For finiteT, the optimal
path never exactly reaches the saddle point. To account for
this, we incorporate a small offset into the second part of the
path, which then begins at some small finite value att=0 and
ends atsxf ,yfd at t=T. As T→`, this initial value tends to
zero. The first part of the path then does not start exactly at
sx0,y0d, but the sum of the initial points of the two sections
will be sx0,y0d. The action we calculate for the first section
of the path will differ from the infiniteT value only by ex-
ponentially small corrections. In the rest of this section, we
will concentrate on finding the equations and action for the
first part of the path in the limitT→`. In Sec. V, we will
describe the division of the path more precisely and discuss
why the details of the second part of the path are far less
important.

To determine the optimal path fromsx0,y0d to the saddle
point, we need to determine the equation of the separatrix,
since we will be treating initial conditions near to the sepa-
ratrix in a different way from those which are not. The equa-
tion of the separatrix can be found by determining the trajec-
tories of the system with no noise which pass through the
saddle points. For the ANPM, the equations for these trajec-
tories are

ẋ = ax − gxy2, ẏ = by − gyx2, s38d

which leads to the following equation for the separatrix:

dy

dx
=

ysb − gx2d
xsa − gy2d

. s39d

A completely analogous discussion in the LVCM gives the
equation of the separatrix to be Eq.s39d, but with gx2 and

gy2 replaced bygx andgy, respectively. The solution of this
equation is discussed in detail in Appendix A, but in order to
simplify the discussion, let us restrict ourselves to the case
whereb=a. Then it is not surprisingsand is proved in Ap-
pendix Ad that the equation of the separatrix in the upper
quadrant isy=x for both models.

To determine the optimal path, we restrict ourselves to the
upper quadrant in the ANPM, since the results in the other
quadrants will be identical up to reflections in thex and y
axes. To begin, suppose thatsx0,y0d actually lies on the sepa-
ratrix si.e., y0=x0;xs,0 when b=ad. Then since it is clear
from Eq. s25d for alternatively Eq.s23dg that the equations
without noise have solutions which have zero action, and
since the actions are non-negative, the solutions of Eq.s38d
sor the corresponding equations in the LVCMd are solutions
of least action. They must therefore be solutions of the
second-order Euler-Lagrange equations found from varying
the action. This is easy to check by explicit differentiation.
When b=a, trajectories along the separatrix are obtained
settingystd=xstd and so solving

ẋ = Hax − gx3 for the ANPM

ax − gx2 for the LVCM,
J s40d

subject toxs0d=xs,0. One finds that

xsstd =5
Îaxs,0e

at

Îa + gxs,0
2 se2at − 1d

for the ANPM

axs,0e
at

a + gxs,0seat − 1d
for the LVCM,6 s41d

where the subscripts is to remind us that this is a solution on
the separatrix. Notice thatxsstd tends to the saddle point as
t→`, as required, whichever side of the saddle the initial
point is on.

Using the solutions41d for motion along the separatrix as
a starting point, we can perform a linearization of the Euler-
Lagrange equations about this solution. In this way, we
would expect to be able to obtain optimal paths which start at
an initial point near the separatrix and end at the saddle
point. Therefore, we writefremembering thatysstd=xsstdg

xstd = xsstd + x̂std, ystd = xsstd + ŷstd, s42d

and substitute these equations into those for the optimal
paths for the ANPMfEqs. s32d and s33dg and the LVCM
fEqs. s34d and s35dg. Canceling terms using the Euler-
Lagrange equation satisfied byxsstd and keeping only terms
linear in x̂std and ŷstd gives the two sets of equations

ẍ̂ = sa2 − 4agxs
2 + 7g2xs

4dx̂ − 8gxs
2sa − gxs

2dŷ, s43d

ÿ̂ = sa2 − 4agxs
2 + 7g2xs

4dŷ − 8gxs
2sa − gxs

2dx̂ s44d

for the ANPM, and

ẍ̂

xs
− 2

ẋsẋ̂

xs
2 = H ẍs

xs
2 − 2

ẋs
2

xs
3 + g2xsJx̂ − g

ẋs

xs
ŷ, s45d
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ÿ̂

xs
− 2

ẋsẏ̂

xs
2 = H ẍs

xs
2 − 2

ẋs
2

xs
3 + g2xsJŷ − g

ẋs

xs
x̂ s46d

for the LVCM, where we have made use of Eq.s40d to sim-
plify this expression. These equations appear to be compli-
cated, but in fact they can be solved analytically: the explicit
forms for these optimal paths within the linear approxima-
tion are given in Appendix B. The motion on the separatrix is
compared to the linearized solution plus the motion on the
separatrix in Fig. 2. The paths begin at different values ofx
sthe separatrix solution begins at the perpendicular projection
of the initial point onto the separatrixd, but the optimal path
approaches the separatrix solution as both approach the
saddle pointsx=1d.

The action for the first part of the optimal path from the
initial point to the saddle may be found by expanding the
classical action aroundxsstd,

Sc = SfrWs + r̂Wg = SfrWsg + o
i=1

2 E
0

`

dt r̂iU dS

dr istd
U

c

+
1

2 o
i,j=1

2 E
0

` E
0

`

dt dt8 r̂ istdU d2S

dr istddr jst8d
U

c
r̂ jst8d,

s47d

to quadratic order. SincerWsstd is a zero-action solution of the
extremal equationdS/dr istd=0, the first two terms on the
right-hand side of Eq.s47d vanish, and only the quadratic
terms survive. Moreover, by choosing the linear perturbation
appropriately, it is shown in Appendix B thatx̂std=−ŷstd, and
in Appendix C that

Sc = Ssx0 − y0d2, s48d

whereS is given by

S =
sa − gxs,0

2 d2

4Fsa − gxs,0
2 d − gxs,0

2 lnS a

gxs,0
2 DG s49d

for the ANPM and

S =
sa − gxs,0d2

8xs,0
2 Fa lnS a

gxs,0
D − sa − gxs,0dG s50d

for the LVCM, and where

xs,0 =
1

2
sx0 + y0d. s51d

In the above, we have assumed thatT→`, so that the first
part of the path ends at the saddle point. The results
s48d–s50d hold in this limit. However, as we will discuss in
the next section, we need to keepT large, but finite, in order
to perform the integration over the possible final states. This
is achieved by retaining the initial and final conditionsrs0d
=r0 and rsTd=r f for the full path, but modifying the condi-
tions on the first part of the path to bers0d=z and rsTd=0.
Hererstd;ystd−xstd is the coordinate transverse to the sepa-
ratrix, which turns out to be the crucial one in performing the
calculation. The quantityz will be defined in Sec. V, but as
T→` ,z→ r0, as it has to. This means that the results found
in this current section are changed whenT is large but finite,
by sid replacingSc=Sr0

2 in Eq. s48d by Sc=Sz2, and sii d in-
cluding exponentially small terms inT—which vanish asT
→`—in the expressions given by Eqs.s49d and s50d. We
will now go on to discuss these points in more detail.

V. RESULTS

In this section, we add the second part of the optimal
path—which starts at the saddle point and ends in the final
state—to the calculation carried out in Sec. IV, and so obtain
an expression for the probability that each final state is se-
lected. We have seen that the ANPM and the LVCM have the
same mechanism of state selection, and the calculations in
one model bear a close similarity to those in the other. The
advantage of the ANPM is, of course, that because it is a
potential model, the stochastic dynamics can be thought of as
the dynamics of a Brownian particle moving on a two-
dimensional surface. It will be useful to keep this picture in
mind, and so we will discuss the final calculation of the
state-selection probabilities in the context of the ANPM,
even though the formalism will also be applicable to the
LVCM.

We are assuming thatT is large, so as explained in Sec.
IV, the path will run from the initial point near the separatrix
to a point near the saddle, and then to the final point. The
initial and final points are given, but the intermediate point
near the saddle is not: only in the limitT→` does the path
reach the saddle. The optimal paths in theT→` limit of the
ANPM are sketched in Fig. 3. The gridded surface represents
the potentialU, while the dark lines show the optimal paths.
From a starting point near the separatrix, the path goes to the
saddle point. From here, two final states are available, and
the paths into both thex and y “valleys” are shown. It will
also turn out that one of the integrals over the final position
becomes singular in the limitT→`, and soT has to be kept
large and finite until the last step of the calculation. The
approach we will adopt is based on our experience with a

FIG. 2. Thex coordinate of the motion along the separatrix for
the ANPM sdashed lined and the optimal path within the linear
approximation,xcstd ssolid lined for sx0,y0d=s0.4,0.2d and a=b
=g=1.

BAXTER, McKANE, AND TARLIE PHYSICAL REVIEW E 71, 011106s2005d

011106-8



similar calculation in a one-dimensional problemfẋ=
−V8sxd+hstdg, and we will follow closely Appendix B of
Ref. f15g.

We once again will assume thata=b so that the equation
of the separatrix has the simple formy=x. Then we define
coordinates parallel and perpendicular to the separatrix by

r ; y − x, s;
1

2
sx + yd −Îa

g
, s52d

so that the origin is moved to the saddle point. We now pick
a positive value ofr, which we denote byR, which is far
enough from the separatrix so that once the system has
crossed the liner =R, there is negligible probability of it
crossing back over the separatrix and ending up in thex
valley. Thus the probability that the system has selected
states in they valley is

PsR,Tux0,y0,0d =E dsfE
R

`

drfPsr f,sf,Tux0,y0,0d, s53d

where the integration over the final statessxf ,yfd has been
converted into an integral over the final statessr f ,sfd in they
valley. The integration over all allowedsf will be relatively
straightforward. The integration over ther f is more subtle,
since it is clearly this integration that is crucial in determin-
ing the probability that the system picks its final state in the
y valley, so we will carry out this integration first. To do this,
let us write the division of the optimal path for motion in the
r direction explicitly as the sum of two parts,

rstd = r1st;zd + r2st;r fd. s54d

Herer1std contains the first part of the path to the vicinity of
the saddle point andr2std the second part of the path from the
vicinity of the saddle point to the final state. Fort!T sbefore
the saddle point is reachedd, r2 is negligible and the solution
only consists ofr1. For t very close toT safter leaving the
saddle pointd, r1 is negligible and the solution only consists
of r2. For the vast majority of the time, the system is near the

saddle, sorstd<0 and both termssr1 and r2d are negligible.
The initial point of r1 will not be exactly atr0 for finite T,
with the difference being included inr2. The initial and final
conditions for the two parts are therefore

r1s0d = z, r1sTd = 0, s55d

r2s0d = r0 − z, r2sTd = r f . s56d

The offsetr2s0d can be thought of as the value ofr at some
intermediate time, when the path is close to the saddle. It is
included inr2 so that we can impose the conditionr1sTd=0,
which allows us to use the action for the first part of the path
as calculated in Sec. IV. For finiteT, r2s0;r fd sthe initial
point of r2d is nonzero, but asT→`, r2s0;r fd→0, so z
→ r0 in this limit. Since the two parts of the optimal path are
widely separated, the action for the entire path is just the sum
of the two separate parts. However, the action of the second
part is zero, since this is a “downhill” solution: it is of the
form s38d corresponding to a solution of the original set of
equations but without noise. Thus the action only comes
from the first part of the path. However, this path has to be
solved subject tor1s0,zd=z sby definitiond and r1sT,zd=0
fsince we have constructedr1 and r2 to ensure this:
r2sT; r fd=rsTdg. This gives the action calculated in the last
sectionsup to exponentially small correctionsd, except thatr0
must be replaced byz at finite T, that is,Sc=Sz2. Therefore,
the probability that the system selects final states in they
valley is found by calculating

PsR,Tux0,y0,0d , E dsfE
R

`

drf exph− Sz2/Dj. s57d

If we considerT to be fixed at some finite value, thenz
can be thought of as a function ofr f; the value of the offset
will vary depending on the final point. Now we see why we
need to keepT finite. If T→`, z reachesr0 and so no longer
depends onr f. We need to keepT finite in order to make a
change of variables fromr f to z.

To evaluate the integrals57d, we change variables fromr f
to z using the transformation

z= r0 − r2s0;r fd, s58d

giving

PsR,Tux0,y0,0d , E dsfE
−`

Z

dzexph− Sz2/Dj, s59d

whereZ=r0−r2s0;Rd. For very large values ofr f, there is not
sufficient time for the path to reach a point very close to the
saddle and then move to the final point. The offset becomes
larger, and sincer0 is fixed, uzu must increase. In the extreme
limit as r f →`, z→−`. Therefore, the upper limit of infinity
for r f becomes a lower limit of minus infinity forz.

Having made the change of variables, we may now let
T→`. Since there is zero chance that the final state of the
second path will be atr f =R at infinite time,Z=r0 in this
limit, and the result becomes independent ofR, as we would
expect,

FIG. 3. Representation of the potentialU. The solution of the
Euler-Lagrange equations from a point near the separatrix to the
saddle is shown, with the two alternative paths from the saddle to
the two stable states. The fine line is the separatrix.
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Psx0,y0d , E dsfE
−`

r0

dzexph− Sz2/Dj. s60d

The integrand does not depend onsf, so this second inte-
gration will simply produce a prefactor. There are other pre-
factors, but as we will see, the leading-order exponential in
Eq. s60d is sufficient to give excellent agreement with Monte
Carlo simulations. The normalization can be determined by
noting that if x0=y0, the probability in Eq.s60d should be
1/2, since if the system starts on the separatrix, there is an
equal probability that it should end up in thex andy valleys.
For r0Þ0, the integral in Eq.s60d is an error function and so

Psy valleyd =
1

2
f1 + erfsr0ÎS/Ddg , s61d

⇒Psx valleyd =
1

2
f1 − erfsr0ÎS/Ddg . s62d

We have been assuming thatr0.0 si.e., we start above the
separatrix, withy0.x0d, but if r0,0, by a similar set of
arguments to those given above, we find that

Psx valleyd =
1

2
f1 + erfsur0uÎS/Ddg , s63d

⇒Psy valleyd =
1

2
f1 − erfsur0uÎS/Ddg . s64d

These can be incorporated into one relation,

P± =
1

2
h1 ± erffÎScsr0d/Dgj , s65d

whereScsr0d=Sr0
2 and where the plus or minus sign is taken

depending on whether the sign ofr in the selected state is the
same or different from the sign ofr0.

An identical line of reasoning applies to the LVCM and
thus the results65d gives the probability of each state being
selected both in the ANPM and the LVCM, whereS is given
by Eq. s49d or Eq. s50d as appropriate. The accuracy of this
result may be checked by performing a large number of
simulations of the original stochastic model starting in the
statesx0,y0d and counting the fraction of occasions in which
the final state lies in thex valley or they valley.

In Fig. 4, we see just such a comparison. The probability
of selecting thex-valley state derived from a numerical simu-
lation of the LVCM model is compared with the probability
calculated using Eq.s65d, for a range of initial positions
along a line perpendicular to the separatrix. The agreement is
very good, even for starting points relatively far from the
separatrix. In this exampleD=0.01, but the results remain
very good for quite large values ofD, as shown in Figs. 5
and 6. For the ANPM, there are four competing states, and as
D becomes larger, it becomes possible for the two nonadja-
cent states to be reachedsfor starting points in the positive
quadrant, these are the negative-x and negative-y valleysd.
The sum of probabilities to reach these states is also marked
in the left-hand plots of Figs. 5 and 6 as open circles, and it
is clear that the appearance of these states coincides with the

departure of our calculation from the Monte Carlo values.
State selection from points near the origin was considered in
Ref. f14g, but the selection of the nonadjacent states can be
thought of as “escape” over the maximum in the potential
near the origin. In systems escaping from a metastable state
over a barrier, we would expect escape to become possible
when the noise strength reaches some critical value ofD,
proportional to the barrier height. A crude measure of the
height of the “barrier” over which the ANPM system is es-
caping isDV0, defined as the difference between the values
of the potential at the starting point and at the origin. Figure
7 plots the ratioDV0/Dc for a variety of starting points in a
band of width 0.4 either side of the separatrixshereDc is the
value ofD for which the nonadjacent states begin to be ac-
cessibled. We see that the ratio is indeed relatively constant,
and is approximately equal to 7 for this parameter choice.
For starting points on the far side of the saddle point from
the origin sdistances greater than 1.4 in Fig. 7d, the “barrier
height” is harder to characterize, as there is a minimumsthe
saddled between the starting point and the origin, so the ratio
DV0/Dc is less meaningful. Different choices of the param-
etersa , b, andg also give a ratio that is constant with start-
ing point, although the value differs. For the LVCM, there
are only two possible states, so we do not encounter the same
situation. From the right-hand sides of Figs. 5 and 6, it is
clear that our results are accurate up to much larger values of
D, beyondD=1 in this case, whena=b=g=1.

VI. CONCLUSIONS

In this paper, we have investigated a model of two species
in competition with each other in a stochastic environment.
In the parameter range of interest, only one species survives
in the final state, but there is noa priori way of predicting
which one it will be: the outcome is stochastic. This is an
example of a large class of problems which involve state
selection: if there is more than one accessible final state in a
dynamical system, what are the probabilities of these being
chosen from a given initial state when the system is subject
to noise? We described an analytical approach to the calcu-
lation of these probabilities and illustrated it on the Lotka-
Volterra competition modelsLVCM d and on a potential
model with additive noisesANPMd. The introduction of this

FIG. 4. Probability that the positive-x state is reached in the
LVCM, within the linear approximationssolid lined compared with
Monte Carlo calculations+d, as a function of starting position along
the linex0=1−y0, whenD=0.01 anda=b=g=1.
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latter model served three purposes:sid it illustrated the fact
that the analytical technique which we used has many uni-
versal features, and can be applied to many models which
show state selection of this kind,sii d being a potential model,
it allowed us to visualize the dynamics far more easily, and
siii d the presence of more than two final states allowed us to
observe when the small-D approximation fails. A similar ef-
fect is observed for starting points close to the origin. The
dynamics of the system in this case are influenced by the
unstable point at the origin, and the linearization about the
separatrix becomes inaccurate. Starting points near the origin
were considered in detail in Ref.f14g. The additive nature of
the noise also contrasted with the more complex multiplica-
tive noise of the LVCM.

The calculation was based on the representation of the
stochastic differential equations describing the system as
path integrals, and the subsequent evaluation of these path
integrals using the method of steepest descents for small val-
ues of the noise strength. The integrals are dominated by
“optimal paths” which can be determined by solvingdeter-
ministic differential equations. These types of calculations
are commonplace when studying transitions from one stable
state of a dynamical system to another stable statesboth
made metastable by the addition of noised, but here we have
been concerned with quantifying transition probabilities
from an arbitrary initial point to asmetadstable state. The
calculation was made easier by the observation that, if the
initial state is reasonably far from the separatrix separating
the two basins of attraction of the stable states in a system
with no noise, then there is little chance of the system cross-
ing over the separatrix. Therefore, in this case the system
will select the final state which is in the same basin of attrac-
tion as the initial state. It is clear that this will not be the case

for initial points near the separatrix, where there will be a
nonzero probability of the system crossing over. How “near”
is defined is not so clear, but we found that results which are
in excellent agreement with numerical simulations can be
obtained by keeping only the leading-ordersexponentiald
term in the steepest-descent calculation and linearizing the
equations for the optimal paths about optimal paths which lie
entirely on the separatrix. The reasons why using only the
leading-order contribution is sufficient to get such good
agreement, even for values ofD larger than 1, is not at all
clear and merits further investigation. It also shows that there
are no noise-induced transitions because of changes in sta-
bility of fixed points or because of new steady states created
at finiteD. Such phenomena may occur in systems with mul-
tiplicative noisef27–29g. They would not be picked up by
the approximations used in this paper, which are valid in the
limit D→0.

In an earlier paperf15g, we discussed the relationship
between calculations of the type we have presented here and
those carried out using the backward Fokker-Planck equation
f30,31g. Although the latter method is considerably simpler
to implement for one-dimensional problems, for systems in-
volving two dimensions or more it is much less useful. In
fact, the calculation in these cases proceeds by a series of
mappings on to the classical mechanics defined by the action
S discussed in Sec. III. By contrast, the path-integral method
is more directly associated with the original stochastic prob-
lem, and the intuition gained by visualization of the optimal
paths is frequently helpful.

An important ingredient in the analysis was the observa-
tion that the state-selection probabilities become independent
of the time interval,T, between the initial and final states ifT
is sufficiently large that state selection has had a chance to

FIG. 5. Probability that the positive-x state is
reached, within the linear approximationssolid
lined, compared with Monte Carlo simulations
sblack circlesd for both ANPM sleftd and LVCM
srightd, as a function ofD, for initial position
sx0,y0d=s0.4,0.3d and a=b=g=1. The open
circles are the sum of the probabilities for reach-
ing the states which are on the axes nonadjacent
to the starting positions.

FIG. 6. Probability that the positive-x state is
reached, within the linear approximationssolid
lined, compared with Monte Carlo simulations
sblack circlesd for both ANPM sleftd and LVCM
srightd, as a function ofD, for initial position
sx0,y0d=s1.3,1.2d anda=b=0.8,g=1. The open
circles are the sum of the probabilities for reach-
ing the states which are on the axes nonadjacent
to the starting positions.
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occur. However, the calculation simplifies considerably in
the limit T→`, since the optimal path passes through the
saddle point, which allows us to break the path down into
two distinct parts. The first part of the path runs from the
initial point sx0,y0d to the saddle point and has a nonzero
action if the initial point is not on the separatrixsx0Þy0 in
the symmetric casea=bd. The second part has zero action.
There is a small technical complication: in order to perform
an integral over one of the final positionssr fd, it is necessary
to keepT large but finite. This is overcome by reexpressing
the initial and final conditions on the entire optimal path
frs0d=r0, rsTd=r fg as initial and final conditions on the first
part of the path onlyfr1s0d=z, r1sTd=0g. After the change of
variable fromr f to z has been carried out in the integral, the
limit T→` may safely be taken.

The method of calculation was illustrated by assuming
that the growth rate of both species was equalsa=bd. This
implied that the separatrix was simply given by the equation
y=x. There is no problem performing the calculation when
aÞb, but much of it has to be carried out numerically be-
cause the equation of the separatrix in this casesgiven in
Appendix Ad can only be found implicitly. The optimal path
on the separatrix can be found by integrating backwards in
time from the saddle pointsso that the direction along the
separatrix is unstabled.

The most remarkable aspect of the calculation was the
fact that a simple, closed form expression for the state-
selection probability could be found which held for values of
D as large as 10sfor the range of values of the other param-
eters of the model which we investigatedd. This is larger than
we would naively have expected and is a much larger value
than would be used in practice, since in the construction of
the stochastic equations, the effects modeled by the noise
terms should be small in relation to the other terms. We were
able to identify the reason for the breakdown in the approxi-
mation asD increased in the ANPM. This happened at
smaller values ofD than for the LVPM, and was due to
escape from initial states in the positive quadrant to the states
lying on the negativex and negativey axes. Since no such
states exist for the LVPMsx and y being constrained to be
non-negatived, this effect is not present in this case. These
results were obtained without having to go beyond leading
order or beyond the linear approximation about the optimal

path on the separatrix. In addition, no integration had to be
carried out to calculate the action of the optimal paths. We
expect these features will persist in more complicated prob-
lems of this type, such as higher-dimensional systems, and so
provide a means of determining state-selection probabilities
in a range of situations.
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APPENDIX A: EQUATION OF THE SEPARATRIX

In this appendix, we determine the equation of the sepa-
ratrix both for the ANPM and the LVCM, and also the equa-
tion of the optimal paths in both models which start on the
separatrix and end at the saddle point.

As discussed in Sec. IV, the equations of the optimal paths
which stay on the separatrix are simply the original stochas-
tic equations, but without the noise. These equations are
first-order equations which can be shown to satisfy the
second-order Euler-Lagrange equations obtained from a
variation of the appropriate action. These equations for the
ANPM were given in Sec. IVfEq. s38dg, and for the LVCM
they are

ẋ = ax − gxy, ẏ = by − gxy. sA1d

Clearly these two sets of equations are very closely related: if
we substitutex8std=x2std and y8std=y2std, where t=2t, in
Eq. s38d, we obtain Eq.sA1d. So if we can solve one set of
equations, we can solve the other. Therefore, we will concen-
trate on those given by Eq.sA1d.

Let us first simplify the equations by introducing new
variablesX andY through

xstd =
bXstd

g
, ystd =

aYstd
g

, sA2d

so that Eq.sA1d now reads

Ẋ = aXs1 − Yd, Ẏ = bYs1 − Xd. sA3d

The saddle point is now atsX* ,Y*d=s1,1d and the equation
of the separatrix is

dY

dX
=

bYs1 − Xd
aXs1 − Yd

. sA4d

Solving this equation subject to the condition thatY=1 when
X=1 gives

fX exps1 − Xdgb = fY exps1 − Ydga. sA5d

Whenb=a, this equation reduces toXe−X=Ye−Y. The solu-
tions of the equationfsXd= fsYd, wherefszd=eln z−z, may be

FIG. 7. Ratio ofDV0 to Dc for starting points within 0.2 of the
separatrix, as a function of the distance of the starting point from
the origin. The open circles are based on Monte Carlo simulations
of 50 000 runs, as are those in Figs. 5 and 6.
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investigated by considering the inverse of the functiongszd
=sz−1d−ln zù0. The solution we require is the one which
lies in the sectorsX, Y,1 andX, Y.1 and is simplyX=Y.
The equation of the optimal path is seen from Eq.sA3d to

satisfy Ẋ=aXs1−Xd, which is easily solved to give

Xsstd =
Xs,0e

at

1 + Xs,0seat − 1d
, sA6d

whereX0=Y0;Xs,0 is the starting point.
WhenaÞb, new variables can be defined by

r = fX exps1 − Xdgb, s = fY exps1 − Ydga, sA7d

so that the equation of the separatrix isr=s, the saddle point
is again s1, 1d, and rstd=sstd for the optimal path on the
separatrix. However, we have not found a differential equa-
tion for rstd which is simple enough to solve, and so the
optimal path has to be found numerically in this case. This is
easy enough to do: by reversing the time, and starting from a
point arbitrarily close to the saddle point, the direction along
the separatrix is now ustable and the solution to a given
initial snow finald point on the separatrix can be determined.
A similar calculation leads to equations for the ANPM simi-
lar to Eqs.sA6d and sA7d.

APPENDIX B: LINEARIZATION NEAR THE SEPARATRIX

In Sec. IV, we obtained equations for the optimal paths
which start near the separatrix by linearizing about optimal
paths which start on the separatrix. These linear deviations
satisfy Eqs.s43d ands44d in the case of the ANPM and Eqs.
s45d ands46d in the case of the LVCM. In this appendix, we
explicitly solve these equations.

In both cases, the equations can be decoupled by defining
new variables

rstd = ŷstd − x̂std, sstd =
1

2
fx̂std + ŷstdg. sB1d

The equations in terms of these new variables are now

r̈ = sa2 + 4agxs
2 − g2xs

4dr , sB2d

s̈= sa2 − 12agxs
2 + 15g2xs

4ds sB3d

for the ANPM, and

r̈

xs
− 2

ẋsṙ

xs
2 = H ẍs

xs
2 − 2

ẋs
2

xs
3 + g2xs + g

ẋs

xs
Jr , sB4d

s̈

xs
− 2

ẋsṡ

xs
2 = H ẍs

xs
2 − 2

ẋs
2

xs
3 + g2xs − g

ẋs

xs
Js sB5d

for the LVCM. To determine the initial conditions in terms of
r ands, let us first note that we may also define them as

rstd = ystd − xstd, sstd =
1

2
fxstd + ystdg − xsstd. sB6d

The variablerstd corresponds to motion perpendicular to the
separatrix andsstd to motion parallel to the separatrix.

In the original formulation of the problem, there are two
initial conditions,xs0d=x0 and ys0d=y0, but we now have
three possible initial parameters:r0=rs0d, s0=ss0d, andxs,0

=xss0d. We are free to choose one of them however we wish,
so long as the remaining two are then chosen so as to satisfy
xs0d=x0 andys0d=y0. If we think of the initial pointsx0,y0d
as a perturbation about the separatrix, we are effectively free
to choose the direction of the perturbation fromsxs,0,xs,0d. It
would seem sensible to choosexs,0 so that the perturbation is
as small as possible—that is, perpendicular to the separatrix.
So we chooses0=0, which means we must havexs,0= 1

2sx0

+y0d and r0=y0−x0. As we will see later, this choice of lin-
earization leads to significant simplifications.

The equations forr ands may be further rationalized by
introducing new variables

sstd = xsfstd, rstd = xsgstd. sB7d

For the ANPM, we have

f̈ +
ḟ

f
ḟ = s3f2 − 2fdf , sB8d

g̈ +
ḟ

f
ġ = s− f2 + 2fdg, sB9d

wheref=gxs
2/a and the time derivatives are now with re-

spect tot=2at. For the LVCM, we have

f̈ = s2c2 − cdf , sB10d

g̈ = cg, sB11d

wherec=gxs/a and the time derivatives are now with re-
spect tot=at.

We now make one last transformation. We introduce a
new independent variable

m =
1

1 + Aet , sB12d

where

A =5
gxs,0

2

a − gxs,0
2 for the ANPM

gxs,0

a − gxs,0
for the LVCM.6 sB13d

Then f=1−m and ḟ /f=m, and alsoc=1−m. In addition,
we introduce new dependent variables

fstd = mFsmd, gstd = mGsmd. sB14d

Substituting these changes of variables into the equations for
f andg, and canceling terms proportional tos1−md and m2

from the resulting differential equationssm=1 only whent
=0 andmÞ0 for finite td, we find

ms1 − md
d2F

dm2 + s3 − 5md
dF

dm
= 0, sB15d
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ms1 − md
d2G

dm2 + s3 − 5md
dG

dm
− 4G = 0 sB16d

for the ANPM and

ms1 − md
d2F

dm2 + s3 − 4md
dF

dm
= 0, sB17d

ms1 − md
d2G

dm2 + s3 − 4md
dG

dm
− 2G = 0 sB18d

for the LVCM. These are hypergeometric equations, but for-
tunately the solutions correspond to degenerate cases and can
all be expressed in terms of elementary functions. Indepen-
dent solutions are

F1smd = 1, F2smd = 3 lnS m

1 − m
D +

1

1 − m
−

1

2m2 −
2

m
,

sB19d

G1smd =
1

m2lns1 − md +
1

ms1 − md
, G2smd =

1

m2

sB20d

for the ANPM and

F1smd = 1, F2smd = − 2 lnS m

1 − m
D +

1

m2 +
2

m
,

sB21d

G1smd =
1

m2lns1 − md +
1

m
, G2smd =

1

m2 sB22d

for the LVCM.
We require that bothx̂std andŷstd tend to zero ast→`, so

that the end point of the path is at the saddle point. This
implies that only the solutionsF1smd andG1smd in the above
set of solutions are allowed. The solutions forsstd have the
especially simple forms

sstd = HB1xssa − gxs
2d/a for the ANPM

B2xssa − gxsd/a for the LVCM,
J sB23d

whereB1 andB2 are constants. Implementing the initial con-
dition ss0d=0 givesB1=B2=0 and sosstd;0. This shows
that our choice of perturbation means that motion is such that
x̂std=−ŷstd, which greatly simplifies the analysis.

The remaining solution is given by

rstd = HChfaxs/sa − gxs
2dglnsgxs

2/ad + fa/sgxsdgj for the ANPM

Dhfaxs/sa − gxsdglnsgxs/ad + xsj for the LVCM,
J sB24d

where C and D are constants. Sincers0d=r0=y0−x0, we
identify the constantsC andD as

C = r0hfaxs,0/sa − gxs,0
2 dglnsgxs,0

2 /ad + fa/sgxs,0dgj−1,

sB25d

D = r0hfaxs,0/sa − gxs,0dglnsgxs,0/ad + xs,0j−1. sB26d

Finally we note that, sincex̂std=−ŷstd, rstd=−2x̂std=2ŷstd.

APPENDIX C: CALCULATION OF THE ACTION

Having determined the analytic form for the portion of the
optimal path from the initial state to the separatrix in Appen-
dix B, we will now determine the action of this solution. It
will turn out that it can be calculated without carrying out
any further integrals. The action of the path from the saddle
point to the final state is zero, so the action calculated in this
appendix is the total action.

To calculate the action for the ANPMs25d, we need to
find ẋ+]V/]x and ẏ+]V/]y. Substitutingx=xs+ x̂, y=xs+ ŷ,
and using the fact thatxsstd satisfies Eq.s40d and ŷstd=
−x̂std=rstd /2,

Sẋ +
] V

] x
D = − Sẏ +

] V

] y
D = −

1

2
hṙ − fa + gxs

2grj sC1d

to linear order. For the LVCM, an analogous calculation
gives

S ẋ

x
− a + gyD = − S ẏ

y
− b + gxD = −

1

2
H d

dt
S r

xs
D − grJ ,

sC2d

again to linear order. We therefore find the classical action
for the first part of the path in the ANPM to be

Sc =
1

8
E

0

T

dtfṙ − sa + gxs
2drg2, sC3d

and for the LVCM to be

Sc =
1

8
E

0

T

dtfġ − gxsgg2, sC4d

wheregstd is defined by Eq.sB7d. Multiplying out the square
in the integrands and integrating by parts yields new inte-
grals which are identically zero. To prove this, Eq.s40d for
thexs has to be used, as well as Eq.sB2d for r and Eq.sB11d
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for g. Only the boundary terms obtained through integration
by parts remain,

Sc =5
1

8
frṙ − sa + gxs

2dr2g0
T for the ANPM

1

8
fgġ− gxsg

2g0
T for the LVCM.6 sC5d

Both r andg vanish at the upper limit, and also we may show
by direct differentiation of Eq.sB24d that

ṙ − sa + gxs
2dr = −

2aCsa − gxs
2d

gxs
sC6d

for the ANPM and

ġ − gxsg = Dsa − gxsd sC7d

for the LVCM. Therefore, we find that

Sc =
sa − gxs,0

2 d2r0
2

4Fsa − gxs,0
2 d − gxs,0

2 lnS a

gxs,0
2 DG sC8d

for the ANPM and

Sc =
sa − gxs,0d2r0

2

8xs,0
2 Fa lnS a

gxs,0
D − sa − gxs,0dG sC9d

for the LVCM.
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